×

Large deviations for non-Markovian diffusions and a path-dependent Eikonal equation. (English. French summary) Zbl 1351.35276

By adapting a PDE method to path-dependent equations and using techniques of backward stochastic differential equations, the large deviation pronciple (LDP) is established for a class of stochastic differential equations driven by Brownian motion with path-dependent Lipschitzian coefficientsm. This provides an alternative study of the topic to F. Gao and J. Liu [Stoch. Dyn. 6, No. 4, 487–520 (2006; Zbl 1113.60030)] where the pioneering idea of Freidlin and Wentzell is applied. The main result is applied to characterize the short maturity asymptotics of the implied volatility surface in financial mathematics.

MSC:

35R60 PDEs with randomness, stochastic partial differential equations
35D40 Viscosity solutions to PDEs
35K10 Second-order parabolic equations
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60H30 Applications of stochastic analysis (to PDEs, etc.)

Citations:

Zbl 1113.60030

References:

[1] H. Berestycki, J. Busca and I. Florent. Asymptotics and calibration of local volatility models. Quant. Finance 2 (2002) 61-69. · doi:10.1088/1469-7688/2/1/305
[2] H. Berestycki, J. Busca and I. Florent. Computing the implied volatility in stochastic volatility models. Comm. Pure Appl. Math. 57 (10) (2004) 1352-1373. · Zbl 1181.91356 · doi:10.1002/cpa.20039
[3] J. Cvitanić and J. Zhang. Contract Theory in Continuous-Time Models . Springer-Verlag, Berlin, Heidelberg, 2012. · Zbl 1319.91007 · doi:10.1007/978-3-642-14200-0
[4] S. De Marco and P. K. Friz. Varadhan’s estimates, projected diffusions, and local volatilities. Preprint, 2013.
[5] J. D. Deuschel, P. K. Friz, A. Jacquier and S. Violante. Marginal density expansions for diffusions and stochastic volatility, Part I: Theoretical foundations (with Deuschel, J. D., Friz, P. K. and Violante, S.). Comm. Pure Appl. Math. 67 (1) (2014) 40-82. · Zbl 1300.60093 · doi:10.1002/cpa.21478
[6] J. D. Deuschel, P. K. Friz, A. Jacquier and S. Violante. Marginal density expansions for diffusions and stochastic volatility, Part II: Applications. Comm. Pure Appl. Math. 67 (2) (2014) 321-350. · Zbl 1300.60093 · doi:10.1002/cpa.21478
[7] N. El Karoui, M. Jeanblanc-Picqué and S. E. Shreve. Robustness of the Black and Scholes formula. Math. Finance 8 (2) (1998) 93-126. · Zbl 0910.90008 · doi:10.1111/1467-9965.00047
[8] N. El Karoui, S. Peng and M. C. Quenez. Backward stochastic differential equations in finance. Math. Finance 7 (1997) 1-71. · Zbl 0884.90035 · doi:10.1111/1467-9965.00022
[9] L. C. Evans and H. Ishii. A PDE approach to some asymptotic problems concerning random differential equations with small noise intensities. Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1) (1985) 1-20. · Zbl 0601.60076
[10] L. C. Evans and P. E. Souganidis. A PDE approach to geometric optics for semilinear parabolic equations. Indiana Univ. Math. J. 38 (1989) 141-172. · Zbl 0692.35014 · doi:10.1512/iumj.1989.38.38007
[11] L. C. Evans and P. E. Souganidis. A PDE approach to certain large deviation problems for systems of parabolic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989) 229-258. · Zbl 0679.60040
[12] J. Feng and T. G. Kurtz. Large Deviations for Stochastic Processes. Mathematical Surveys and Monographs 131 . American Mathematical Society, Providence, RI. · Zbl 1113.60002
[13] W. H. Fleming. Exit probabilities and optimal stochastic control. Appl. Math. Optim. 4 (1978) 329-346. · Zbl 0398.93068 · doi:10.1007/BF01442148
[14] W. H. Fleming and H. M. Soner. Controlled Markov Processes and Viscosity Solutions , 2nd edition. Springer, New York, 2006. · Zbl 1105.60005 · doi:10.1007/0-387-31071-1
[15] W. H. Fleming and E. Souganidis. PDE-viscosity solution approach to some problems of large deviations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 13 (2) (1986) 171-192. · Zbl 0622.60032
[16] M. Ford and A. Jacquier. Small-time asymptotics for implied volatility under the Heston model. Int. J. Theor. Appl. Finance 12 (6) (2009) 861-876. · Zbl 1203.91290 · doi:10.1142/S021902490900549X
[17] M. I. Freidlin and A. D. Wentzell. Random Perturbations of Dynamical Systems . Springer, New York, 1984.
[18] F. Gao and J. Liu. Large deviations for small perturbations of SDEs with non-Markovian coefficients and the applications. Stoch. Dyn. 6 (4) (2006) 487-520. · Zbl 1113.60030 · doi:10.1142/S0219493706001840
[19] J. Gatheral, E. P. Hsu, P. Laurence, C. Ouyang and T.-H. Wang. Asymptotic of implied volatility in local volatility models. Math. Finance 22 (4), 591-620. · Zbl 1270.91093 · doi:10.1111/j.1467-9965.2010.00472.x
[20] I. Gyöngy. Mimicking the one-dimensional marginal distributions of processes having an Itô differential. Probab. Theory Related Fields 71 (4) (1986) 501-516. · Zbl 0579.60043 · doi:10.1007/BF00699039
[21] P. Hagan, A. Lesniewski and D. Woodward. Probability distribution in the SABR model of stochastic volatility. Working paper, 2004.
[22] P. Henry-Labordère. Analysis, Geometry, and Modeling in Finance. Chapman & Hall/CRC Financial Mathematics Series . CRC Press, Boca Raton, FL, 2008. · Zbl 1151.91006
[23] M. Kobylanski. Backward stochastic differential equations and partial differential equations with quadratic growth. Ann. Probab. 28 (2) (2000) 558-602. · Zbl 1044.60045 · doi:10.1214/aop/1019160253
[24] N. Yu. Lukoyanov. On viscosity solution of functional Hamilton-Jacobi type equations for hereditary systems. Proc. Steklov Inst. of Math. 259 (2007) S190-S200. · Zbl 1236.49067
[25] E. Pardoux and S. G. Peng. Adapted solution of a backward stochastic differential equation. Systems Control Lett. 14 (1990) 55-61. · Zbl 0692.93064 · doi:10.1016/0167-6911(90)90082-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.