×

Hypocoercivity of Langevin-type dynamics on abstract smooth manifolds. (English) Zbl 1484.58019

Summary: In this article we investigate hypocoercivity of Langevin-type dynamics in nonlinear smooth geometries. The main result stating exponential decay to an equilibrium state with explicitly computable rate of convergence is rooted in an appealing Hilbert space strategy by Dolbeault, Mouhot and Schmeiser. This strategy was extended in [M. Grothaus and P. Stilgenbauer, J. Funct. Anal. 267, No. 10, 3515–3556 (2014; Zbl 1347.37007)] to Kolmogorov backward evolution equations in contrast to the dual Fokker-Planck framework. We use this mathematically complete elaboration to investigate wide ranging classes of Langevin-type SDEs in an abstract manifold setting, i.e. (at least) the position variables obey certain smooth side conditions. Such equations occur e.g. as fibre lay-down processes in industrial applications. We contribute the Lagrangian-type formulation of such geometric Langevin dynamics in terms of (semi-)sprays and in the end \(L^2\)-exponential ergodicity with explicit rates for the associated Hunt processes.

MSC:

58J65 Diffusion processes and stochastic analysis on manifolds
37A25 Ergodicity, mixing, rates of mixing

Citations:

Zbl 1347.37007

References:

[1] Ambrose, W.; Palais, R. S.; Singer, I. M., Sprays, Anais Acad. Brasil. Ci., 32, 163-178 (1960) · Zbl 0097.37904
[2] Angst, Jürgen; Bailleul, Ismaël; Tardif, Camille, Kinetic brownian motion on riemannian manifolds, Electron. J. Probab., 20, 40 (2015), Id/No 110 · Zbl 1329.60274
[3] Baudoin, Fabrice, Sub-Laplacians and hypoelliptic operators on totally geodesic Riemannian foliations, (Geometry, Analysis and Dynamics on Sub-Riemannian Manifolds. Volume I. Lecture Notes from the IHP Trimester, Institut Henri PoincarÉ, Paris, France and from the CIRM Summer School “Sub-Riemannian Manifolds: From Geodesics To Hypoelliptic Diffusion”, Luminy, France, Fall 2014 (2016), European Mathematical Society (EMS): European Mathematical Society (EMS) Zürich), 259-321 · Zbl 1379.53035
[4] Baudoin, Fabrice; Bonnefont, Michel; Chen, Li, Convergence to equilibrium for hypoelliptic non-symmetric Ornstein-Uhlenbeck type operators (2019), arXiv:1906.10828
[5] Baudoin, Fabrice; Gordina, Maria; Herzog, David P., Gamma calculus beyond Villani and explicit convergence estimates for langevin dynamics with singular potentials, Arch. Ration. Mech. Anal., 241, 2, 765-804 (2021) · Zbl 1478.60215
[6] Baudoin, Fabrice; Tardif, Camille, Hypocoercive estimates on foliations and velocity spherical Brownian motion, Kinet. Relat. Models, 11, 1, 1-23 (2018) · Zbl 1374.60150
[7] Beckner, William, A generalized Poincaré inequality for Gaussian measures, Proc. Am. Math. Soc., 105, 2, 397-400 (1989) · Zbl 0677.42020
[8] Berline, Nicole; Getzler, Ezra; Vergne, Michéle, Heat Kernels and Dirac Operators (1992), Springer, VII, 369 S · Zbl 0744.58001
[9] Bismut, Jean-Michel, Hypoelliptic Laplacian and probability, J. Math. Soc. Japan, 67, 4, 1317-1357 (2015) · Zbl 1334.35019
[10] Boeckx, E.; Vanhecke, L., Unit tangent sphere bundles with constant scalar curvature, Czechoslovak Math. J., 51, 3, 523-544 (2001), https://doi.org/10.1023/A:1013779805244 · Zbl 1079.53063
[11] Boeckx, E.; Vanhecke, L.; Auchmuty, G., Characteristic reflections on unit tangent sphere bundles, Houston J. Math., 23, 3, 427-448 (1997) · Zbl 0897.53010
[12] Bott, Raoul; Milnor, John W., On the parallelizability of the spheres, Bull. Am. Math. Soc., 64, 87-89 (1958) · Zbl 0082.16602
[13] Bou-Rabee, Nawaf; Owhadi, Houman, Stochastic variational integrators, IMA JNA, 29, 2, 421-443 (2009) · Zbl 1171.37027
[14] Bucataru, Ioan, Metric nonlinear connections, Differential Geom. Appl., 25, 3, 335-343 (2006) · Zbl 1125.53017
[15] Bucataru, Ioan, Geometric structures for differential equations fields (2012), habilitation thesis elaborated at Universitatea “Alexandru Ioan Cuza” din Iaişi · Zbl 1278.53079
[16] Bucataru, Ioan; Constantinescu, Oana; Dahl, Matias F., A geometric setting for systems of ordinary differential equations, Int. J. Geom. Methods Mod. Phys., 08, 06, 1291-1327 (2011) · Zbl 1286.34018
[17] Carmo, Manfredo P. do, Riemannian Geometry (1992), Birkhäuser: Birkhäuser Boston, Mass. u.a., https://kplus.ub.uni-kl.de/Record/KLU01-000298396 · Zbl 0733.53001
[18] Coffey, William T.; Kalmykov, Yuri P.; Waldron, John T., The Langevin Equation. with Applications To Stochastic Problems in Physics, Chemistry and Electrical Engineering, xxii + 827 (2012), World Scientific: World Scientific Hackensack, NJ · Zbl 1269.82002
[19] Conrad, Florian; Grothaus, Martin, Construction of n-particle langevin dynamics for \(H^{1 , \infty}\)-potentials via generalized Dirichlet forms, Potential Anal., 28, 3, 261-282 (2008) · Zbl 1142.60063
[20] Conrad, Florian; Grothaus, Martin, Construction, ergodicity and rate of convergence of \(N\)-particle langevin dynamics with singular potentials, J. Evol. Equ., 10, 3, 623-662 (2010) · Zbl 1239.82015
[21] Conway, John B., A Course in Functional Analysis, xvi + 399 (1990), Springer-Verlag: Springer-Verlag New York etc. · Zbl 0706.46003
[22] Dai, Feng; Xu, Yuan, Approximation Theory and Harmonic Analysis on Spheres and Balls (2013), Springer: Springer New York, NY, xviii + 440 · Zbl 1275.42001
[23] Davies, Edward Brian, One-Parameter Semigroups, 230 (1980), London Mathematical Society, Monographs, No. 15. London etc.: Academic Press, A Subsidiary of Harcourt Brace Jovanovich, Publishers. VIII · Zbl 0457.47030
[24] Dolbeault, Jean; Mouhot, Clément; Schmeiser, Christian, Hypocoercivity for kinetic equations with linear relaxation terms, C. R. Math., 347, 9, 511-516 (2009), http://www.sciencedirect.com/science/article/pii/S1631073X09000880 · Zbl 1177.35054
[25] Dolbeault, Jean; Mouhot, Clément; Schmeiser, Christian, Hypocoercivity for linear kinetic equations conserving mass, Trans. Amer. Math. Soc., 367, 6, 3807-3828 (2015), https://doi.org/10.1090/S0002-9947-2015-06012-7 MR3324910 · Zbl 1342.82115
[26] Dombrowski, Peter, On the geometry of the tangent bundle, J. Reine Angew. Math., 210, 73-88 (1962) · Zbl 0105.16002
[27] Fábrega y. Escatllar, Johannes Ulrich, Die Sasaki-Metrik auf dem Tangential- und dem Sphärenbündel (2001), University of Cologne
[28] Folland, Gerald B., Real Analysis: Modern Techniques and their Applications (1999), Wiley · Zbl 0924.28001
[29] Forster, Otto, Analysis 3: Maß- Und Integrationstheorie, Integralsätze Im IRn Und Anwendungen (2012), Vieweg+Teubner Verlag · Zbl 1244.26001
[30] Gaffney, Matthew P., The harmonic operator for exterior differential forms, Proc. Natl. Acad. Sci. USA, 37, 48-50 (1951) · Zbl 0042.10205
[31] Gaffney, Matthew P., A special Stoke’s theorem for complete Riemannian manifolds, Ann. Math. (2), 60, 140-145 (1954) · Zbl 0055.40301
[32] Gaffney, Matthew P., The heat equation method of milgram and rosenbloom for open Riemannian manifolds, Ann. Math. (2), 60, 458-466 (1954) · Zbl 0057.07501
[33] Gangolli, R., On the construction of certain diffusions on a differentiable manifold, Z. Wahrscheinlichkeitstheor. Verw. Geb., 2, 406-419 (1964) · Zbl 0132.12702
[34] Gliklikh, Yuri, Global Analysis in Mathematical Physics. Geometric and Stochastic Methods (1997), Springer-Verlag New York · Zbl 0868.58001
[35] Goetz, Abraham, On measures in fibre bundles, Colloq. Math., 7, 11-18 (1959), https://doi.org/10.4064/cm-7-1-11-18 MR0151576 · Zbl 0090.26703
[36] Götz, T.; Klar, A.; Marheineke, N.; Wegener, R., A stochastic model and associated Fokker-Planck equation for the fiber lay-down process in nonwoven production processes, SIAM J. Appl. Math., 67, 6, 1704-1717 (2007) · Zbl 1127.37041
[37] Grosser, Michael; Kunzinger, Michael; Oberguggenberger, Michael; Steinbauer, Roland, Geometric theory of generalized functions with applications to general relativity, Mathematics and its Applications, xvi+505 (2001), Kluwer Academic Publishers, Dordrecht, https://doi.org/10.1007/978-94-015-9845-3 MR1883263 · Zbl 0998.46015
[38] Grothaus, Martin; Maringer, Johannes; Stilgenbauer, Patrik, Geometry, mixing properties and hypocoercivity of a degenerate diffusion arising in technical textile industry (2012), preprint at math.PR
[39] Grothaus, Martin; Stilgenbauer, Patrik, Geometric Langevin equations on submanifolds and applications to the stochastic melt-spinning process of nonwovens and biology, Stoch. Dyn., 13, 04, Article 1350001 pp. (2013) · Zbl 1277.82042
[40] Grothaus, M.; Stilgenbauer, P., Hypocoercivity for Kolmogorov backward evolution equations and applications, JFA, 267, 10, 3515-3556 (2014) · Zbl 1347.37007
[41] Grothaus, Martin; Stilgenbauer, Patrik, Hilbert space hypocoercivity for the Langevin dynamics revisited, Methods Funct. Anal. Topol., 22, 2, 152-168 (2016), http://mfat.imath.kiev.ua/article/?id=847 MR3522857 · Zbl 1363.47089
[42] Gudmundsson, Sigmundur; Kappos, Elias, On the geometry of tangent bundles, Expo. Math., 20, 1, 1-41 (2002) · Zbl 1007.53027
[43] Hebey, Emmanuel, (Nonlinear Analysis on Manifolds. Sobolev Spaces and Inequalities. Nonlinear Analysis on Manifolds. Sobolev Spaces and Inequalities, Courant Lecture Notes in Mathematics, vol. 5 (1999), New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI), x+309, MR1688256 · Zbl 0866.58068
[44] Helffer, Bernard; Nier, Francis, Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians, Lect. Notes Math., x + 209 (2005), Springer: Springer Berlin · Zbl 1072.35006
[45] Herzog, David P.; Mattingly, Jonathan C., Ergodicity and Lyapunov functions for Langevin dynamics with singular potentials, Commun. Pure Appl. Math., 72, 10, 2231-2255 (2019) · Zbl 1436.60056
[46] Horvath, John, Topological vector spaces and distributions. Vol. I. (1966), Addison-Wesley Series in Mathematics. Reading, Mass.-Palo Alto-London- Don Mills, Ontario: Addison-Wesley Publishing Company. XII, 449 p. (1966) · Zbl 0143.15101
[47] Ibort Latre, Alberto; Lledó Macau, Fernando; Pérez Pardo, Juan Manuel, Self-adjoint extensions of the Laplace-Beltrami operator and unitaries at the boundary, JFA, 268, 3, 634-670 (2015), http://www.sciencedirect.com/science/article/pii/S0022123614004418 · Zbl 1310.47032
[48] Jørgensen, E., Construction of the Brownian motion and the Ornstein-Uhlenbeck process in a Riemannian manifold on basis of the Gangolli-McKean injection scheme, Z. Wahrscheinlichkeitstheor. Verw. Geb., 44, 71-87 (1978) · Zbl 0389.60065
[49] Kervaire, Michel A., Non-parallelizability of the \(n\)-sphere for \(n > 7\), Proc. Natl. Acad. Sci. USA, 44, 280-283 (1958) · Zbl 0093.37303
[50] Klar, Axel; Maringer, Johannes; Wegener, Raimund, A 3D model for fiber lay-down in nonwoven production processes, Math. Models Methods Appl. Sci., 22, 9 (2012), 1250020, 18 · Zbl 1259.37032
[51] Kolokoltsov, V. N., Semiclassical Analysis for Diffusions and Stochastic Processes, Lect. Notes Math., viii + 347 (2000), Springer: Springer Berlin · Zbl 0951.60001
[52] Lang, Serge, Differential Manifolds (1985), Springer-Verlag: Springer-Verlag New York · Zbl 0551.58001
[53] jun. Lawson, H. Blaine; Michelsohn, Marie-Louise, Spin Geometry, xii + 427 (1989), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 0688.57001
[54] Lee, John, Introduction To Smooth Manifolds (2012), Springer
[55] Lindner, Felix; Marheineke, Nicole; Stroot, Holger; Vibe, Alexander; Wegener, Raimund, Stochastic dynamics for inextensible fibers in a spatially semi-discrete setting, Stoch. Dyn., 17, 2, 29 (2017) · Zbl 1360.74098
[56] Marheineke, Nicole; Wegener, Raimund, Fiber dynamics in turbulent flows: specific Taylor drag, SIAM J. Appl. Math., 68, 1, 1-23 (2007) · Zbl 1136.74015
[57] Marsden, Jerrold; Ratiu, Tudor, Introduction To Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems (1999), Springer-Verlag New York · Zbl 0933.70003
[58] McKean, H. P. jun., Stochastic integrals, 140 (1969), New York-London: Academic Press XIII · Zbl 0191.46603
[59] Nicolaescu, Liviu I., Lectures on the Geometry of Manifolds (1996), World Scientific Publishing · Zbl 0883.53001
[60] Pérez Pardo, Juan Manuel, On the theory of self-adjoint extensions of the Laplace-Beltrami operator, quadratic forms and symmetry (2013), Universidad Carlos III de Madrid, (Ph.D. thesis)
[61] Soloveitchik, M. R., Fokker-Planck equation on a manifold. Effective diffusion and spectrum, Potential Anal., 4, 6, 571-593 (1995) · Zbl 0838.60067
[62] Stannat, Wilhelm, the Theory of Generalized Dirichlet Forms and Its Applications in Analysis and Stochastics, viii + 101 (1999), American Mathematical Society (AMS): American Mathematical Society (AMS) Providence, RI · Zbl 1230.60006
[63] Stilgenbauer, Patrik, The stochastic analysis of fiber lay-down models (2014), Technische Universität Kaiserslautern (TUK), (Ph.D. thesis)
[64] Tachibana, Shunichi; Okumura, M., On the almost-complex structure of tangent bundles of Riemannian spaces, Tohoku Math. J. (2), 14, 156-161 (1962) · Zbl 0114.38003
[65] Trutnau, Gerald, Stochastic calculus of generalized Dirichlet forms and applications to stochastic differential equations in infinite dimensions, Osaka J. Math., 37, 2, 315-343 (2000) · Zbl 0963.60071
[66] Trutnau, Gerald, On a class of non-symmetric diffusions containing fully non-symmetric distorted Brownian motions, Forum Math., 15, 3, 409-437 (2003) · Zbl 1028.31007
[67] Villani, Cédric, Hypocoercive diffusion operators., Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8), 10, 2, 257-275 (2007) · Zbl 1178.35306
[68] Villani, Cédric, Hypocoercivity, Mem. Am. Math. Soc., 950, 1-141 (2009) · Zbl 1197.35004
[69] Watanabe, Shinzo; Ikeda, Nobuyuki, Stochastic Differential Equations and Diffusion Processes (1981), North Holland · Zbl 0495.60005
[70] Wolf, Joseph A., Essential self adjointness for the Dirac operator and its square, Indiana Univ. Math. J., 22, 611-640 (1973) · Zbl 0263.58013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.