×

A geometric setting for systems of ordinary differential equations. (English) Zbl 1286.34018

The geometric setting for systems of ODEs comprises, in particular, the construction of a canonical nonlinear connection. This connection induces another geometric objects that serve as efficient tools for the study of the system. There are various approaches to construct such connections, some of which are mentioned in the paper. With reference to the inspiring work of Kosambi, the authors propose a uniform setting both for systems of second and higher order.
The system of ODEs of order \(k+1\) on a smooth manifold \(M\) is represented by a semispray on \(T^kM\), the bundle of \(k\)-velocities of \(M\). The canonical nonlinear connection on \(T^kM\) is determined by the requirement of compatibility with the tangent structure (which is the tensor field of type \((1,1)\) describing the flag of vertical subbundles of the tangent bundle of \(T^kM\)). The point symmetries, newtonoid vector fields, and first-order variations of the system are expressed in terms of the canonical nonlinear connection, respectively, in terms of the induced dynamical covariant derivative and the Jacobi endomorphism. The components of the Jacobi endomorphism form the basic invariants of the system of ODEs and they are explicitly described as well. As an application it is shown that these components correspond to the well-known Wünschmann-type invariants associated to equations of third and fourth order. Another application for systems of equations describing the biharmonic curves on Riemannian manifolds is discussed in detail.

MSC:

34A26 Geometric methods in ordinary differential equations
34C14 Symmetries, invariants of ordinary differential equations
58E30 Variational principles in infinite-dimensional spaces

References:

[1] DOI: 10.1007/BF00147300 · Zbl 0729.53030 · doi:10.1007/BF00147300
[2] DOI: 10.1007/978-94-007-0942-3 · doi:10.1007/978-94-007-0942-3
[3] Balmuş A., Differential Geometry – Dynamical Systems Monographs 10, in: Biharmonic Maps and Submanifolds (2009)
[4] DOI: 10.1007/978-1-4612-1268-3 · doi:10.1007/978-1-4612-1268-3
[5] Bucataru I., Publ. Math. 56 pp 21–
[6] Bucataru I., Houston J. Math. 31 pp 315–
[7] DOI: 10.1016/j.difgeo.2006.11.011 · Zbl 1125.53017 · doi:10.1016/j.difgeo.2006.11.011
[8] DOI: 10.1016/j.crma.2007.07.027 · Zbl 1126.70013 · doi:10.1016/j.crma.2007.07.027
[9] DOI: 10.1007/s00009-009-0020-9 · Zbl 1229.70044 · doi:10.1007/s00009-009-0020-9
[10] Bucataru I., J. Geom. Mech. 1 pp 159–
[11] DOI: 10.1142/S0219887810004026 · Zbl 1189.53038 · doi:10.1142/S0219887810004026
[12] DOI: 10.1088/0305-4470/29/8/016 · Zbl 0916.34051 · doi:10.1088/0305-4470/29/8/016
[13] DOI: 10.1007/s00009-006-0090-x · Zbl 1116.58013 · doi:10.1007/s00009-006-0090-x
[14] Cariñena J. F., Group Theoretical Methods in Physics (1991)
[15] DOI: 10.1007/978-1-4757-2201-7 · doi:10.1007/978-1-4757-2201-7
[16] Catz G., C. R. Math. Acad. Sci. Paris 278 pp 347–
[17] Crampin M., J. London Math. Soc. 2 pp 178–
[18] DOI: 10.1017/S0305004100064501 · Zbl 0609.58049 · doi:10.1017/S0305004100064501
[19] Crampin M., Ann. Inst. H. Poincaré Phys. Théor. 65 pp 223–
[20] DOI: 10.1063/1.2157050 · Zbl 1111.34009 · doi:10.1063/1.2157050
[21] DOI: 10.1090/S0002-9947-96-01720-5 · Zbl 0879.34016 · doi:10.1090/S0002-9947-96-01720-5
[22] DOI: 10.1142/9789812772732_0017 · doi:10.1142/9789812772732_0017
[23] DOI: 10.5802/aif.407 · Zbl 0219.53032 · doi:10.5802/aif.407
[24] DOI: 10.1142/3996 · doi:10.1142/3996
[25] Jiang G. Y., Chinese Ann. Math. Ser. A 7 pp 389–
[26] Kosambi D. D., Quart. J. Math. 6 pp 1–
[27] Kosambi D. D., Quart. J. Math. 7 pp 97–
[28] DOI: 10.1063/1.530952 · Zbl 0845.70012 · doi:10.1063/1.530952
[29] de León M., North-Holland Mathematics Studies, 112. Notes on Pure Mathematics 102, in: Generalized Classical Mechanics and Field Theory. A Geometrical Approach of Lagrangian and Hamiltonian Formalisms Involving Higher Order Derivatives (1985)
[30] DOI: 10.1088/0266-5611/8/4/006 · Zbl 0754.53025 · doi:10.1088/0266-5611/8/4/006
[31] DOI: 10.1007/BF02729691 · doi:10.1007/BF02729691
[32] DOI: 10.1007/BF00671371 · Zbl 0833.58015 · doi:10.1007/BF00671371
[33] DOI: 10.1007/978-94-017-3338-0 · doi:10.1007/978-94-017-3338-0
[34] DOI: 10.1007/978-94-011-0788-4 · doi:10.1007/978-94-011-0788-4
[35] Miron R., Rev. Roumaine Math. Pures Appl. 41 pp 237–
[36] DOI: 10.1142/9789812770295 · doi:10.1142/9789812770295
[37] DOI: 10.1016/S1631-073X(02)02507-4 · Zbl 1016.34007 · doi:10.1016/S1631-073X(02)02507-4
[38] DOI: 10.1103/PhysRevE.79.046606 · doi:10.1103/PhysRevE.79.046606
[39] Sarlet W., Differential Geom. Appl. pp 412–
[40] DOI: 10.1016/S0926-2245(02)00065-7 · Zbl 1048.34019 · doi:10.1016/S0926-2245(02)00065-7
[41] DOI: 10.1007/978-94-015-9727-2 · doi:10.1007/978-94-015-9727-2
[42] J. Szilasi, A Setting for Spray and Finsler Geometry, Handbook of Finsler Geometry 2 (Kluwer Academic Publisher, Dordrecht, 2003) pp. 1183–1426. · Zbl 1105.53043
[43] Tulczyjew W. M., Bull. Acad. Polon. Sci. 24 pp 1089–
[44] Yano K., Tangent and Cotangent Bundles (1973)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.