×

Gamma calculus beyond Villani and explicit convergence estimates for Langevin dynamics with singular potentials. (English) Zbl 1478.60215

Summary: We apply Gamma calculus to the hypoelliptic and non-symmetric setting of Langevin dynamics under general conditions on the potential. This extension allows us to provide explicit estimates on the convergence rate (which is exponential) to equilibrium for the dynamics in a weighted \(H^1(\mu )\) sense, \( \mu\) denoting the unique invariant probability measure of the system. The general result holds for singular potentials, such as the well-known Lennard-Jones interaction and confining well, and it is applied in such a case to estimate the rate of convergence when the number of particles \(N\) in the system is large.

MSC:

60J60 Diffusion processes
35Q70 PDEs in connection with mechanics of particles and systems of particles
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
37A25 Ergodicity, mixing, rates of mixing

References:

[1] Athreya, A.; Kolba, T.; Mattingly, JC, Propagating Lyapunov functions to prove noise-induced stabilization, Electron. J. Probab., 17, 96, 38 (2012) · Zbl 1308.37003
[2] Bakry, D.; Cattiaux, P.; Guillin, A., Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré, J. Funct. Anal., 254, 3, 727-759 (2008) · Zbl 1146.60058 · doi:10.1016/j.jfa.2007.11.002
[3] Baudoin, F.: Bakry-émery meet Villani. J. Funct. Anal. 273(7), 2275-2291, 2017 · Zbl 1373.35061
[4] Cattiaux, P., Guillin, A., Monmarché, P., Zhang, C.: Entropic multipliers method for Langevin diffusion and weighted log sobolev inequalities, arXiv preprint arXiv:1708.01058 (2017) · Zbl 1461.60065
[5] Conrad, F.; Grothaus, M., Construction, ergodicity and rate of convergence of \(N\)-particle Langevin dynamics with singular potentials, J. Evol. Equ., 10, 3, 623-662 (2010) · Zbl 1239.82015 · doi:10.1007/s00028-010-0064-0
[6] Cooke, B.; Herzog, DP; Mattingly, JC; McKinley, SA; Schmidler, SC, Geometric ergodicity of two-dimensional Hamiltonian systems with a Lennard-Jones-like repulsive potential, Commun. Math. Sci., 15, 7, 1987-2025 (2017) · Zbl 1386.37053 · doi:10.4310/CMS.2017.v15.n7.a10
[7] Dolbeault, J.; Mouhot, C.; Schmeiser, C., Hypocoercivity for linear kinetic equations conserving mass, Trans. Am. Math. Soc., 367, 6, 3807-3828 (2015) · Zbl 1342.82115 · doi:10.1090/S0002-9947-2015-06012-7
[8] Eberle, A.; Guillin, A.; Zimmer, R., Couplings and quantitative contraction rates for Langevin dynamics, Ann. Probab., 47, 4, 1982-2010 (2019) · Zbl 1466.60160 · doi:10.1214/18-AOP1299
[9] Eberle, A.; Guillin, A.; Zimmer, R., Quantitative Harris-type theorems for diffusions and McKean-Vlasov processes, Trans. Am. Math. Soc., 371, 10, 7135-7173 (2019) · Zbl 1481.60154 · doi:10.1090/tran/7576
[10] Grothaus, M.; Stilgenbauer, P., A hypocoercivity related ergodicity method for singularly distorted non-symmetric diffusions, Integral Equ. Oper. Theory, 83, 3, 331-379 (2015) · Zbl 1361.37007 · doi:10.1007/s00020-015-2254-1
[11] Hairer, M.; Mattingly, JC, Spectral gaps in Wasserstein distances and the 2D stochastic Navier-Stokes equations, Ann. Probab., 36, 6, 2050-2091 (2008) · Zbl 1173.37005 · doi:10.1214/08-AOP392
[12] Hairer, M.; Mattingly, JC, Slow energy dissipation in anharmonic oscillator chains, Commun. Pure Appl. Math., 62, 8, 999-1032 (2009) · Zbl 1169.82012 · doi:10.1002/cpa.20280
[13] Hairer, M., Mattingly, J.C.: Yet another look at Harris’ ergodic theorem for Markov chains, Seminar on Stochastic Analysis, Random Fields and Applications VI, Progr. Probab., vol. 63, Birkhäuser/Springer Basel AG, Basel, 2011, pp. 109-117. · Zbl 1248.60082
[14] Hérau, F.; Nier, F., Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal., 171, 2, 151-218 (2004) · Zbl 1139.82323 · doi:10.1007/s00205-003-0276-3
[15] Herzog, DP; Mattingly, JC, Noise-induced stabilization of planar flows I, Electron. J. Probab., 20, 111, 1-43 (2015) · Zbl 1360.37011
[16] Herzog, D.P., Mattingly, J.C.: Ergodicity and Lyapunov functions for Langevin dynamics with singular potentials, arXiv preprint arXiv:1711.02250 (2017) · Zbl 1436.60056
[17] Hörmander, L., Hypoelliptic second order differential equations, Acta Math., 119, 147-171 (1967) · Zbl 0156.10701 · doi:10.1007/BF02392081
[18] Iacobucci, A.; Olla, S.; Stoltz, G., Convergence rates for nonequilibrium Langevin dynamics, Ann. Math. Qué., 43, 1, 73-98 (2019) · Zbl 1419.82044 · doi:10.1007/s40316-017-0091-0
[19] Khasminskii, R.: Stochastic stability of differential equations, second edn., Stochastic Modelling and Applied Probability, vol. 66, Springer, Heidelberg, With contributions by G. N. Milstein and M. B, Nevelson (2012) · Zbl 1241.60002
[20] Katriel, G., Mountain pass theorems and global homeomorphism theorems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11, 2, 189-209 (1994) · Zbl 0834.58007 · doi:10.1016/S0294-1449(16)30191-3
[21] Lu, Y., Mattingly, J.C.: Geometric ergodicity of Langevin dynamics with Coulomb interactions, arXiv preprint arXiv:1902.00602 (2019) · Zbl 1427.82024
[22] Mattingly, JC; Stuart, AM; Higham, DJ, Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise, Stoch. Process. Appl., 101, 2, 185-232 (2002) · Zbl 1075.60072 · doi:10.1016/S0304-4149(02)00150-3
[23] Meyn, SP; Tweedie, RL, Stability of Markovian processes. III. Foster-Lyapunov criteria for continuous-time processes, Adv. Appl. Probab., 25, 3, 518-548 (1993) · Zbl 0781.60053 · doi:10.2307/1427522
[24] Monmarché, P., On \({mathcal H }^1\) and entropic convergence for contractive PDMP, Electron. J. Probab., 20, 128, 30 (2015) · Zbl 1332.60123
[25] Monmarché, P., Generalized \(\Gamma\) calculus and application to interacting particles on a graph, Potential Anal., 50, 3, 439-466 (2019) · Zbl 1411.58013 · doi:10.1007/s11118-018-9689-3
[26] Rey-Bellet, L., Ergodic Properties of Markov Processes, Open Quantum Systems. II, Lecture Notes in Mathematics (2006), Berlin: Springer, Berlin · Zbl 1126.60057
[27] Talay, D., Stochastic Hamiltonian systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme, Markov Process. Related Fields, 8, 2, 163-198 (2002) · Zbl 1011.60039
[28] Tropper, MM, Ergodic and quasideterministic properties of finite-dimensional stochastic systems, J. Statist. Phys., 17, 6, 491-509 (1977) · Zbl 1255.60174 · doi:10.1007/BF01014351
[29] Villani, C., Hypocoercivity, Mem. Am. Math. Soc., 202, 950, iv+141 (2009) · Zbl 1197.35004
[30] Zimmer, R.: Couplings and Kantorovich contractions with explicit rates for diffusions, Ph.D. thesis, Universitäts-und Landesbibliothek Bonn (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.