×

On the restriction of Laplace-Beltrami eigenfunctions and Cantor-type sets. (English) Zbl 1484.58018

Ciatti, Paolo (ed.) et al., Geometric aspects of harmonic analysis. Proceedings of the INdAM meeting, Cortona, Italy, June 25–29, 2018. Cham: Springer. Springer INdAM Ser. 45, 351-360 (2021).
Summary: Let \((M, g)\) denote a compact Riemannian manifold without boundary. This article is an announcement of Lebesgue norm estimates of Laplace-Beltrami eigenfunctions of \(M\) when restricted to certain fractal subsets \(\Gamma\) of \(M\). The proofs in their entirety appear in [the authors, Springer INdAM Ser. 45, 351–360 (2021; Zbl 07444057)]. The sets \(\Gamma\) that we consider are random and of Cantor-type. For large Lebesgue exponents \(p\), our estimates give a natural generalization of \(L^p\) bounds previously obtained in [L. Hörmander, Acta Math. 121, 193–218 (1968; Zbl 0164.13201); Ark. Mat. 11, 1–11 (1973; Zbl 0254.42010); C. D. Sogge, J. Funct. Anal. 77, No. 1, 123–138 (1988; Zbl 0641.46011); N. Burq et al., Duke Math. J. 138, No. 3, 445–486 (2007; Zbl 1131.35053)]. The estimates are shown to be sharp in this range. The novelty of our approach is the combination of techniques from geometric measure theory with well-known tools from harmonic and microlocal analysis. Random Cantor sets have appeared in a variety of contexts before, specifically in fractal geometry, multiscale analysis, additive combinatorics and fractal percolation [J. P. Kahane and J. Peyriere, Adv. Math. 22, 131–145 (1976; Zbl 0349.60051); I. Łaba and M. Pramanik, Geom. Funct. Anal. 19, No. 2, 429–456 (2009; Zbl 1184.28010); Duke Math. J. 158, No. 3, 347–411 (2011; Zbl 1242.42011); P. Shmerkin and V. Suomala, in: Recent developments in fractals and related fields. Conference on fractals and related fields III, Ile de Porquerolles, France, September 2015. Cham: Birkhäuser/Springer. 233–260 (2017; Zbl 1390.28022); Spatially independent martingales, intersections, and applications. Providence, RI: American Mathematical Society (AMS) (2018; Zbl 1435.60005)]. They play a significant role in the study of optimal decay rates of Fourier transforms of measures, and in the identification of sets with arithmetic and geometric structures. Our methods, though inspired by earlier work, are not Fourier-analytic in nature.
For the entire collection see [Zbl 1470.42001].

MSC:

58J60 Relations of PDEs with special manifold structures (Riemannian, Finsler, etc.)
28A78 Hausdorff and packing measures
42A45 Multipliers in one variable harmonic analysis
60D05 Geometric probability and stochastic geometry
60G57 Random measures
28A80 Fractals
Full Text: DOI

References:

[1] Yung, P.: Spectral projection theorems on compact manifolds. Lecture notes, available under “Notes/Slides”. https://www.math.cuhk.edu.hk/ plyung/Sogge.pdf
[2] Bourgain, J., Dyatlov, S.: Spectral gaps without the pressure condition. Ann. Math. 187(3), 824-867 (2018) · Zbl 1392.37065 · doi:10.4007/annals.2018.187.3.5
[3] Colin de Verdière, Y.: Ergodicité et fonctions propres du Laplacien. Commun. Math. Phys. 102, 497-502 (1985) · Zbl 0592.58050
[4] Chen, X., Sogge, C.: A few endpoint geodesic restriction estimates for eigenfunctions. Commun. Math. Phys. 329, 435-459 (2014) · Zbl 1293.58011 · doi:10.1007/s00220-014-1959-3
[5] Eswarathasan, S., Pramanik, M.: Restriction of Laplace-Beltrami eigenfunctions to random Cantor-type sets on manifolds (2019). Pre-print · Zbl 1484.58018
[6] Gérard, P., Leichtnam, É.: Ergodic properties of eigenfunctions for the Dirichlet problem. Duke Math. J. 71, 559-607 (1993) · Zbl 0788.35103 · doi:10.1215/S0012-7094-93-07122-0
[7] Laba, I., Pramanik, M.: Maximal operators and differentiation theorems for sparse sets. Duke Math. J. 158(3), 347-411 (2011) · Zbl 1242.42011
[8] Lindenstrauss, E.: Invariant measures and arithmetic quantum unique ergodicity. Ann. Math. (2) 163, 165-219 (2006) · Zbl 1104.22015
[9] Reznikov, A.: Norms of geodesic restrictions for eigenfunctions on hyperbolic surfaces and representation theory (2010). unpublished update to a work from 2005, arxiv.org/abs/math/0403437v3
[10] Sarnak, P.: Arithmetic quantum chaos. In: The Schur lectures (Tel Aviv, 1992), Israel Math. Conf. Proc., vol. 8, pp. 183-236. Bar-Ilan Univ., Ramat Gan (1995) · Zbl 0831.58045
[11] Shmerkin, P., Suomala, V.: Spatially independent martingales, intersections, and applications. Mem. Am. Math. Soc. 251, 1195 (2018) · Zbl 1435.60005
[12] Shnirelman, A.I.: Ergodic properties of eigenfunctions (in Russian). Uspekhi Mat. Nauk 29(6), 181-182 (1974) · Zbl 0324.58020
[13] Sogge, C.: Oscillatory integrals and spherical harmonics. Duke Math. J. 53, 43-65 (1986) · Zbl 0636.42018 · doi:10.1215/S0012-7094-86-05303-2
[14] Tacy, M.: Semiclassical \(L^{}\) p estimates of quasimodes on submanifolds. Commun. PDE 35(8), 1538-1562 (2010) · Zbl 1205.35352 · doi:10.1080/03605301003611006
[15] Tomas, P.: A restriction theorem for the Fourier transform. Bull. Am. Math. Soc. 81, 477-478 (1975) · Zbl 0298.42011 · doi:10.1090/S0002-9904-1975-13790-6
[16] Naud, F.: Expanding maps on Cantor sets and analytic continuation of zeta functions. Ann. l’ENS 4(38), 116-153 (2005) · Zbl 1110.37021
[17] Anantharaman, N.: Entropy and the localization of eigenfunctions. Ann. Math. (2) 168(2), 435-475 (2008) · Zbl 1175.35036
[18] Blair, M., Sogge, C.: Logarithmic improvements in \(L^{}\) p-norms for eigenfunctions at the critical exponent in the presence of nonpositive curvature (2018). Preprint. arxiv.org/abs/1706.06704 · Zbl 1428.35248
[19] Bourgain, J.: Geodesic restriction and \(L^{}\) p-estimates for eigenfunctions on Riemannian surfaces. Linear and Complex Analysis, pp. 27-35. Amer. Math. Soc. Transl. Ser. 2, 226, Adv. Math. Sci., 63 (2009) · Zbl 1189.58015
[20] Bourgain, J., Dyatlov, S.: Fourier dimension and spectral gaps for hyperbolic surfaces. Geom. Funct. Anal. 27, 744-771 (2017) · Zbl 1421.11071 · doi:10.1007/s00039-017-0412-0
[21] Bourgain, J., Rudnick, Z.: Restriction of toral eigenfunctions to hypersurfaces and nodal sets. Geom. Funct. Anal. 22, 878-937 (2012) · Zbl 1276.53047 · doi:10.1007/s00039-012-0186-3
[22] Burq, N., Gérard, P., Tzetkov, N.: Restrictions of the Laplace-Beltrami eigenfunctions to submanifolds. Duke Math. J. 138(3), 445-487 (2007) · Zbl 1131.35053 · doi:10.1215/S0012-7094-07-13834-1
[23] Hassell, A., Tacy, M.: Semiclassical \(L^{}\) p estimates of quasimodes on curved hypersurfaces. J. Geom. Anal. 22, 74-89 (2012) · Zbl 1256.35218 · doi:10.1007/s12220-010-9191-7
[24] Helffer, B., Martinez, A., Robert, D.: Ergodicité et limite semi-classique. Commun. Math. Phys. 109, 313-326 (1987) · Zbl 0624.58039 · doi:10.1007/BF01215225
[25] Hörmander, L.: Spectral function of an elliptic operator. Acta Math. 121, 193-218 (1968) · Zbl 0164.13201 · doi:10.1007/BF02391913
[26] Hörmander, L.: Oscillatory integrals and multipliers on \(FL^{}\) p. Ark. Math. 11, 1-11 (1971) · Zbl 0254.42010 · doi:10.1007/BF02388505
[27] Hu, R.: \(L^{}\) p norm estimates of eigenfunctions restricted to submanifolds. Forum Math. 21, 1021-1052 (2009) · Zbl 1187.35147 · doi:10.1515/FORUM.2009.051
[28] Kahane, J.-P., Peyriere, J.: Sur certaines martingales de Benoît Mandelbrot. Adv. Math. 22(2), 131-145 (1976) · Zbl 0349.60051 · doi:10.1016/0001-8708(76)90151-1
[29] Koch, H., Tataru, D., Zworski, M.: Semiclassical \(L^{}\) p estimates. Ann. Henri Poincare 5, 885-916 (2007) · Zbl 1133.58025 · doi:10.1007/s00023-006-0324-2
[30] Laba, I., Pramanik, M.: Arithmetic progressions in sets of fractal dimensions. Geom. Funct. Anal. 19, 429-456 (2009) · Zbl 1184.28010 · doi:10.1007/s00039-009-0003-9
[31] Rudnick, Z., Sarnak, P.: The behaviour of eigenstates of arithmetic hyperbolic manifolds. Commun. Math. Phys. 161(1), 195-213 (1994) · Zbl 0836.58043 · doi:10.1007/BF02099418
[32] Shmerkin, P., Suomala, V.: A Class of Random Cantor Measures, with Applications. Recent Developments in Fractals and Related Fields. Trends Math., pp. 233-260. Birkhäuser/Springer, Cham (2017) · Zbl 1390.28022
[33] Sogge, C.: Concerning the \(L^{}\) p norms of spectral clusters of second-order elliptic operators on compact manifolds. J. Funct. Anal. 77, 123-138 (1988) · Zbl 0641.46011 · doi:10.1016/0022-1236(88)90081-X
[34] Sogge, C.: Fourier Integrals in Classical Analysis. Cambridge Tracts in Math., Cambridge Univ. Press, Cambridge (1993) · Zbl 0783.35001
[35] Zelditch, S.: Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke Math. J. 55, 919-941 (1987) · Zbl 0643.58029 · doi:10.1215/S0012-7094-87-05546-3
[36] Zelditch, S., Zworski, M.: Ergodicity of eigenfunctions for ergodic billiards. Commun. Math. Phys · Zbl 0840.58048 · doi:10.1007/BF02099513
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.