×

Semiclassical \(L^p\) estimates of quasimodes on curved hypersurfaces. (English) Zbl 1256.35218

Summary: Let \(M\) be a compact manifold of dimension \(n\), \(P=P(h)\) a semiclassical pseudodifferential operator on \(M\), and \(u=u(h)\) an \(L^2\) normalized family of functions such that \(P(h)u(h)\) is \(O(h)\) in \(L^2(M)\) as \(h\downarrow 0\). Let \(H\subset M\) be a compact submanifold of \(M\). In [Commun. Partial Differ. Equations 35, No. 8, 1538–1562 (2010; Zbl 1205.35352)], the second-named author proved estimates on the \(L^p\) norms, \(p\geq 2\), of \(u\) restricted to \(H\), under the assumption that the \(u\) are semiclassically localized and under some natural structural assumptions about the principal symbol of \(P\). These estimates are of the form \(Ch^{-\delta (n,k,p)}\) where \(k=\dim H\) (except for a logarithmic divergence in the case \(k=n-2, p=2\)). When \(H\) is a hypersurface, i.e., \(k=n-1\), we have \(\delta (n,n-1,2)=1/4\), which is sharp when \(M\) is the round \(n\)-sphere and \(H\) is an equator.
In this article, we assume that \(H\) is a hypersurface, and make the additional geometric assumption that \(H\) is curved (in the sense of Definition 2.6 below) with respect to the bicharacteristic flow of \(P\). Under this assumption we improve the estimate from \(\delta =1/4\) to \(1/6\), generalizing work of N. Burq, P. Gérard and N. Tzvetkov [in: Phase space analysis of partial differential equations. Vol. I. Proceedings of the research trimester, Centro di Ricerca Matematica “Ennio de Giorgi”, Pisa, Italy, 2004. Pisa: Scuola Normale Superiore. Pubblicazioni del Centro di Ricerca Matematica Ennio de Giorgi, 21–52 (2004; Zbl 1084.35086)] and R. Hu [Forum Math. 21, No. 6, 1021–1052 (2009; Zbl 1187.35147)] for Laplace eigenfunctions. To do this we apply the R. B. Melrose and M. E. Taylor theorem [Adv. Math. 55, 242–315 (1985; Zbl 0591.58034)], as adapted by Y. Pan and C. D. Sogge [Colloq. Math. 60/61, No. 2, 413–419 (1990; Zbl 0746.58076)], for Fourier integral operators with folding canonical relations.

MSC:

35S05 Pseudodifferential operators as generalizations of partial differential operators
35P20 Asymptotic distributions of eigenvalues in context of PDEs
58J40 Pseudodifferential and Fourier integral operators on manifolds

References:

[1] Anantharaman, N.: Entropy and the localization of eigenfunctions. Ann. Math. (2) 168(2), 435–475 (2008) · Zbl 1175.35036 · doi:10.4007/annals.2008.168.435
[2] Anantharaman, N., Nonnenmacher, S.: Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold. Ann. Inst. Fourier (Grenoble) 57(7), 2465–2523 (2007). Festival Yves Colin de Verdière · Zbl 1145.81033 · doi:10.5802/aif.2340
[3] Anantharaman, N., Koch, H., Nonnenmacher, S.: Entropy of eigenfunctions. arXiv:0704.1564 (2007) · Zbl 1175.81118
[4] Bourgain, J., Rudnick, Z.: Restriction of toral eigenfunctions to hypersurfaces. C. R. Math. 347(21–22), 1249–1253 (2009) · Zbl 1192.58017 · doi:10.1016/j.crma.2009.08.008
[5] Burq, N., Gérard, P., Tzvetkov, N.: The Cauchy problem for the nonlinear Schrödinger equation on compact manifolds, pp. 21–52. Pubbl. Cent. Ric. Mat. Ennio Giorgi. Scuola Norm. Sup., Pisa (2004) · Zbl 1084.35086
[6] Burq, N., Gérard, P., Tzvetkov, N.: Restrictions of the Laplace-Beltrami eigenfunctions to submanifolds. Duke Math. J. 138(3), 445–486 (2007) · Zbl 1131.35053 · doi:10.1215/S0012-7094-07-13834-1
[7] Comech, A.: Oscillatory integral operators in scattering theory. Commun. Partial Differ. Equ. 22(5–6), 841–867 (1997) · Zbl 0883.35142 · doi:10.1080/03605309708821286
[8] Evans, L.C., Zworski, M.: Lectures on Semiclassical Analysis. Book in progress, http://math.berkeley.edu/\(\sim\)Zworski/semiclassical.pdf
[9] Gérard, P., Leichtnam, É.: Ergodic properties of eigenfunctions for the Dirichlet problem. Duke Math. J. 71(2), 559–607 (1993) · Zbl 0788.35103 · doi:10.1215/S0012-7094-93-07122-0
[10] Golubitsky, M., Guillemin, V.: Stable Mappings and Their Singularities. Graduate Texts in Mathematics, vol. 14. Springer, Berlin (1973) · Zbl 0294.58004
[11] Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. I. Springer, Berlin (1990) · Zbl 0687.35002
[12] Hu, R.: L p norm estimates of eigenfunctions restricted to submanifolds. Forum Math. 21(6), 1021–1052 (2009) · Zbl 1187.35147 · doi:10.1515/FORUM.2009.051
[13] Koch, H., Tataru, D., Zworski, M.: Semiclassical L p estimates. Ann. Henri Poincaré 8(5), 885–916 (2007) · Zbl 1133.58025 · doi:10.1007/s00023-006-0324-2
[14] Melrose, R., Taylor, M.: Near peak scattering and the corrected Kirchhoff approximation for a convex obstacle. Adv. Math. 55(3), 242–315 (1985) · Zbl 0591.58034 · doi:10.1016/0001-8708(85)90093-3
[15] Pan, Y., Sogge, C.: Oscillatory integrals associated to folding canonical relations. Colloq. Math. 60/61(2), 413–419 (1990) · Zbl 0746.58076
[16] Sogge, C.: Concerning the L p norm of spectral clusters for second-order elliptic operators on compact manifolds. J. Funct. Anal. 77(1), 123–138 (1988) · Zbl 0641.46011 · doi:10.1016/0022-1236(88)90081-X
[17] Tacy, M.: Semiclassical L p estimates of quasimodes on submanifolds. Commun. Partial Differ. Equ. 35(8), 1538–1562 (2010) · Zbl 1205.35352 · doi:10.1080/03605301003611006
[18] Tataru, D.: On the regularity of boundary traces for the wave equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 26(1), 185–206 (1998) · Zbl 0932.35136
[19] Zelditch, S.: Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke Math. J. 55(4), 919–941 (1987) · Zbl 0643.58029 · doi:10.1215/S0012-7094-87-05546-3
[20] Zelditch, S., Zworski, M.: Ergodicity of eigenfunctions for ergodic billiards. Commun. Math. Phys. 175(3), 673–682 (1996) · Zbl 0840.58048 · doi:10.1007/BF02099513
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.