×

Rapidly rotating compact stars in Rastall’s gravity. (English) Zbl 1482.83115

Summary: In this work we study rapidly rotating stars by considering the Rastall theory of gravity. We obtain and solve the equations by numerical methods for two usual parametrization of polytropic stars. Then the mass-radius relations, moments of inertia and other results of interest are obtained and compared with the ones for non-rotating stars.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
85A15 Galactic and stellar structure
70E05 Motion of the gyroscope

References:

[1] Abbott, B. P., Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett., 116 (2016) · doi:10.1103/PhysRevLett.116.061102
[2] Abbott, B., GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs, Phys. Rev. X, 9 (2019) · doi:10.1103/PhysRevX.9.031040
[3] Akiyama, K., First M87 event horizon telescope results: IV. Imaging the central supermassive black hole, Astrophys. J. Lett., 875, L4 (2019) · doi:10.3847/2041-8213/ab0e85
[4] Harada, T., Neutron stars in scalar-tensor theories of gravity and catastrophe theory, Phys. Rev. D, 57, 4802 (1998) · doi:10.1103/physrevd.57.4802
[5] Orellana, M.; García, F.; Teppa Pannia, F. A.; Romero, G. E., Structure of neutron stars in R-squared gravity, Gen. Relativ. Gravit., 45, 771-783 (2013) · Zbl 1266.83151 · doi:10.1007/s10714-013-1501-5
[6] Momeni, D.; Myrzakulov, R., Tolman-Oppenheimer-Volkoff equations in modified Gauss-Bonnet gravity, Int. J. Geom. Methods Mod. Phys., 12, 1550014 (2015) · Zbl 1311.83045 · doi:10.1142/s0219887815500140
[7] Oliveira, A.; Velten, H.; Fabris, J.; Casarini, L., Neutron stars in Rastall gravity, Phys. Rev. D, 92 (2015) · doi:10.1103/physrevd.92.044020
[8] Hendi, S. H.; Bordbar, G. H.; Panah, B. E.; Panahiyan, S., Modified TOV in gravity’s rainbow: properties of neutron stars and dynamical stability conditions, J. Cosmol. Astropart. Phys. (2016) · doi:10.1088/1475-7516/2016/09/013
[9] Singh, K. N.; Rahaman, F.; Banerjee, A., Einstein’s cluster mimicking compact star in the teleparallel equivalent of general relativity, Phys. Rev. D, 100 (2019) · doi:10.1103/physrevd.100.084023
[10] Maurya, S. K.; Tello-Ortiz, F., Charged anisotropic compact star in f(R, T) gravity: a minimal geometric deformation gravitational decoupling approach, Phys. Dark Universe, 27 (2020) · doi:10.1016/j.dark.2019.100442
[11] Mota, C. E.; Santos, L. C.; Grams, G.; da Silva, F. M.; Menezes, D. P., Combined Rastall and rainbow theories of gravity with applications to neutron stars, Phys. Rev. D, 100 (2019) · doi:10.1103/physrevd.100.024043
[12] Damour, T.; Esposito-Farèse, G., Tensor-scalar gravity and binary-pulsar experiments, Phys. Rev. D, 54, 1474 (1996) · doi:10.1103/physrevd.54.1474
[13] Sotani, H., Slowly rotating relativistic stars in tensor-vector-scalar theory, Phys. Rev. D, 81 (2010) · doi:10.1103/physrevd.81.084006
[14] Pani, P.; Berti, E.; Cardoso, V.; Read, J., Compact stars in alternative theories of gravity: Einstein-Dilaton-Gauss-Bonnet gravity, Phys. Rev. D, 84 (2011) · doi:10.1103/physrevd.84.104035
[15] Ali-Haïmoud, Y.; Chen, Y., Slowly rotating stars and black holes in dynamical Chern-Simons gravity, Phys. Rev. D, 84 (2011) · doi:10.1103/physrevd.84.124033
[16] Staykov, K. V.; Doneva, D. D.; Yazadjiev, S. S.; Kokkotas, K. D., Slowly rotating neutron and strange stars in R2 gravity, J. Cosmol. Astropart. Phys. (2014) · doi:10.1088/1475-7516/2014/10/006
[17] Silva, H. O.; Macedo, C. F B.; Berti, E.; Crispino, L. C B., Slowly rotating anisotropic neutron stars in general relativity and scalar-tensor theory, Class. Quantum Grav., 32 (2015) · Zbl 1327.83076 · doi:10.1088/0264-9381/32/14/145008
[18] Doneva, D. D.; Yazadjiev, S. S.; Stergioulas, N.; Kokkotas, K. D., Rapidly rotating neutron stars in scalar-tensor theories of gravity, Phys. Rev. D, 88 (2013) · doi:10.1103/physrevd.88.084060
[19] Doneva, D. D.; Yazadjiev, S. S.; Kokkotas, K. D., IQ relations for rapidly rotating neutron stars in f(r) gravity, Phys. Rev. D, 92 (2015) · doi:10.1103/physrevd.92.064015
[20] Yazadjiev, S. S.; Doneva, D. D.; Kokkotas, K. D., Rapidly rotating neutron stars in R-squared gravity, Phys. Rev. D, 91 (2015) · doi:10.1103/physrevd.91.084018
[21] Kleihaus, B.; Kunz, J.; Mojica, S.; Zagermann, M., Rapidly rotating neutron stars in dilatonic Einstein-Gauss-Bonnet theory, Phys. Rev. D, 93 (2016) · doi:10.1103/physrevd.93.064077
[22] Doneva, D. D.; Yazadjiev, S. S., Rapidly rotating neutron stars with a massive scalar field-structure and universal relations, J. Cosmol. Astropart. Phys. (2016) · doi:10.1088/1475-7516/2016/11/019
[23] Doneva, D. D.; Yazadjiev, S. S.; Stergioulas, N.; Kokkotas, K. D., Differentially rotating neutron stars in scalar-tensor theories of gravity, Phys. Rev. D, 98 (2018) · doi:10.1103/physrevd.98.104039
[24] Astashenok, A. V.; Odintsov, S. D., Rotating neutron stars in f(r) gravity with axions, Mon. Not. R. Astron. Soc., 498, 3616-3623 (2020) · doi:10.1093/mnras/staa2630
[25] Özel, F.; Freire, P., Masses, radii, and the equation of state of neutron stars, Annu. Rev. Astron. Astrophys., 54, 401-440 (2016) · doi:10.1146/annurev-astro-081915-023322
[26] Hessels, J. W T.; Ransom, S. M.; Stairs, I. H.; Freire, P. C.; Kaspi, V. M.; Camilo, F., A radio pulsar spinning at 716 Hz, Science, 311, 1901-1904 (2006) · doi:10.1126/science.1123430
[27] Metzger, B. D.; Giannios, D.; Thompson, T. A.; Bucciantini, N.; Quataert, E., The protomagnetar model for gamma-ray bursts, Mon. Not. R. Astron. Soc., 413, 2031-2056 (2011) · doi:10.1111/j.1365-2966.2011.18280.x
[28] Giacomazzo, B.; Perna, R., Formation of stable magnetars from binary neutron star mergers, Astrophys. J., 771, L26 (2013) · doi:10.1088/2041-8205/771/2/l26
[29] Abbott, R., GW190814: gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object, Astrophys. J. Lett., 896, L44 (2020) · doi:10.3847/2041-8213/ab960f
[30] Tsokaros, A.; Ruiz, M.; Shapiro, S. L., GW190814: spin and equation of state of a neutron star companion, Astrophys. J., 905, 48 (2020) · doi:10.3847/1538-4357/abc421
[31] Nunes, R. C.; Coelho, J. G.; de Araujo, J. C., Weighing massive neutron star with screening gravity: a look on PSR J0740+ 6620 and GW190814 secondary component, Eur. Phys. J. C, 80, 1115 (2020) · doi:10.1140/epjc/s10052-020-08695-0
[32] Astashenok, A. V.; Capozziello, S.; Odintsov, S. D.; Oikonomou, V. K., Extended gravity description for the GW190814 supermassive neutron star, Phys. Lett. B, 811 (2020) · Zbl 1475.85007 · doi:10.1016/j.physletb.2020.135910
[33] Clifton, T.; Carrilho, P.; Fernandes, P. G.; Mulryne, D. J., Observational constraints on the regularized 4D Einstein-Gauss-Bonnet theory of gravity, Phys. Rev. D, 102 (2020) · doi:10.1103/physrevd.102.084005
[34] Dexheimer, V.; Gomes, R.; Klähn, T.; Han, S.; Salinas, M., GW190814 as a massive rapidly rotating neutron star with exotic degrees of freedom, Phys. Rev. C, 103 (2021) · doi:10.1103/physrevc.103.025808
[35] Koliogiannis, P. S.; Moustakidis, C. C., Thermodynamical description of hot, rapidly rotating neutron stars, protoneutron stars, and neutron star merger remnants, Astrophys. J., 912, 69 (2021) · doi:10.3847/1538-4357/abe542
[36] Demircik, T.; Ecker, C.; Järvinen, M., Rapidly spinning compact stars with deconfinement phase transition, Astrophys. J., 907, L37 (2021) · doi:10.3847/2041-8213/abd853
[37] Sedrakian, A.; Weber, F.; Li, J. J., Confronting GW190814 with hyperonization in dense matter and hypernuclear compact stars, Phys. Rev. D, 102 (2020) · doi:10.1103/physrevd.102.041301
[38] Komatsu, H.; Eriguchi, Y.; Hachisu, I., Rapidly rotating general relativistic stars: I. Numerical method and its application to uniformly rotating polytropes, Mon. Not. R. Astron. Soc., 237, 355-379 (1989) · Zbl 0671.76064 · doi:10.1093/mnras/237.2.355
[39] Butterworth, E. M., On the structure and stability of rapidly rotating fluid bodies in general relativity: II. The structure of uniformly rotating pseudopolytropes, Astrophys. J., 204, 561-572 (1976) · doi:10.1086/154204
[40] Rastall, P., Generalization of the Einstein theory, Phys. Rev. D, 6, 3357 (1972) · Zbl 0959.83525 · doi:10.1103/physrevd.6.3357
[41] Heydarzade, Y.; Moradpour, H.; Darabi, F., Black hole solutions in Rastall theory, Can. J. Phys., 95, 1253-1256 (2017) · Zbl 1372.83061 · doi:10.1139/cjp-2017-0254
[42] Heydarzade, Y.; Darabi, F., Black hole solutions surrounded by perfect fluid in Rastall theory, Phys. Lett. B, 771, 365-373 (2017) · Zbl 1372.83061 · doi:10.1016/j.physletb.2017.05.064
[43] Ma, M-S; Zhao, R., Noncommutative geometry inspired black holes in Rastall gravity, Eur. Phys. J. C, 77, 629 (2017) · doi:10.1140/epjc/s10052-017-5217-7
[44] Kumar, R.; Ghosh, S. G., Rotating black hole in Rastall theory, Eur. Phys. J. C, 78, 750 (2018) · doi:10.1140/epjc/s10052-018-6206-1
[45] Xu, Z.; Hou, X.; Gong, X.; Wang, J., Kerr-Newman-AdS black hole surrounded by perfect fluid matter in Rastall gravity, Eur. Phys. J. C, 78, 513 (2018) · doi:10.1140/epjc/s10052-018-5991-x
[46] Ali, R.; Asgher, M.; Malik, M. F., Gravitational analysis of neutral regular black hole in Rastall gravity, Mod. Phys. Lett. A, 35, 2050225 (2020) · Zbl 1443.83042 · doi:10.1142/s0217732320502259
[47] Bamba, K.; Jawad, A.; Rafique, S.; Moradpour, H., Thermodynamics in Rastall gravity with entropy corrections, Eur. Phys. J. C, 78, 986 (2018) · doi:10.1140/epjc/s10052-018-6446-0
[48] Lobo, I. P.; Moradpour, H.; Morais Graça, J. P.; Salako, I. G., Thermodynamics of black holes in Rastall gravity, Int. J. Mod. Phys. D, 27, 1850069 (2018) · doi:10.1142/s0218271818500694
[49] Soroushfar, S.; Saffari, R.; Upadhyay, S., Thermodynamic geometry of a black hole surrounded by perfect fluid in Rastall theory, Gen. Relativ. Gravit., 51, 130 (2019) · Zbl 1430.83088 · doi:10.1007/s10714-019-2614-2
[50] Moradpour, H.; Sadeghnezhad, N.; Hendi, S. H., Traversable asymptotically flat wormholes in Rastall gravity, Can. J. Phys., 95, 1257-1266 (2017) · doi:10.1139/cjp-2017-0040
[51] Halder, S.; Bhattacharya, S.; Chakraborty, S., Wormhole solutions in Rastall gravity theory, Mod. Phys. Lett. A, 34, 1950095 (2019) · Zbl 1411.83104 · doi:10.1142/s0217732319500950
[52] Batista, C. E.; Daouda, M. H.; Fabris, J. C.; Piattella, O. F.; Rodrigues, D. C., Rastall cosmology and the λ CDM model, Phys. Rev. D, 85 (2012) · doi:10.1103/physrevd.85.084008
[53] Fabris, J. C.; Piattella, O. F.; Rodrigues, D. C.; Batista, C. E M.; Daouda, M. H., Rastall cosmology, Int. J. Mod. Phys.: Conf. Ser., 18, 67-76 (2012) · doi:10.1142/s2010194512008227
[54] Batista, C. E M.; Fabris, J. C.; Piattella, O. F.; Velasquez-Toribio, A. M., Observational constraints on Rastall’s cosmology, Eur. Phys. J. C, 73, 2425 (2013) · doi:10.1140/epjc/s10052-013-2425-7
[55] Moradpour, H., Thermodynamics of flat FLRW universe in Rastall theory, Phys. Lett. B, 757, 187-191 (2016) · Zbl 1360.83056 · doi:10.1016/j.physletb.2016.03.072
[56] Moradpour, H.; Heydarzade, Y.; Darabi, F.; Salako, I. G., A generalization to the Rastall theory and cosmic eras, Eur. Phys. J. C, 77, 259 (2017) · doi:10.1140/epjc/s10052-017-4811-z
[57] Lin, K.; Qian, W-L, Cosmic evolution of dark energy in a generalized Rastall gravity, Eur. Phys. J. C, 80, 561 (2020) · doi:10.1140/epjc/s10052-020-8116-2
[58] Wolf, C., Non-conservative gravitation and Kaluza Klein cosmology, Phys. Scr., 34, 193 (1986) · Zbl 1063.83598 · doi:10.1088/0031-8949/34/3/001
[59] Caramês, T. R P.; Daouda, M. H.; Fabris, J. C.; Oliveira, A. M.; Piattella, O. F.; Strokov, V., The Brans-Dicke-Rastall theory, Eur. Phys. J. C, 74, 3145 (2014) · doi:10.1140/epjc/s10052-014-3145-3
[60] Hansraj, S.; Banerjee, A.; Channuie, P., Impact of the Rastall parameter on perfect fluid spheres, Ann. Phys., NY, 400, 320-345 (2019) · Zbl 1415.83043 · doi:10.1016/j.aop.2018.12.003
[61] Mota, C. E.; Santos, L. C.; da Silva, F. M.; Flores, C. V.; da Silva, T. J.; Menezes, D. P., Anisotropic compact stars in Rastall-rainbow gravity (2019)
[62] Abbas, G.; Shahzad, M. R., A new model of quintessence compact stars in the Rastall theory of gravity, Eur. Phys. J. A, 54, 211 (2018) · doi:10.1140/epja/i2018-12642-y
[63] Salako, I. G.; Jawad, A.; Moradpour, H., Anisotropic compact stars in non-conservative theory of gravity, Int. J. Geom. Methods Mod. Phys., 15, 1850093 (2018) · Zbl 1404.83096 · doi:10.1142/s0219887818500937
[64] Abbas, G.; Shahzad, M. R., Isotropic compact stars model in Rastall theory admitting conformal motion, Astrophys. Space Sci., 363, 251 (2018) · doi:10.1007/s10509-018-3472-1
[65] Abbas, G.; Shahzad, M. R., Models of anisotropic compact stars in the Rastall theory of gravity, Astrophys. Space Sci., 364, 50 (2019) · doi:10.1007/s10509-019-3537-9
[66] Stephani, H.; Kramer, D.; MacCallum, M.; Hoenselaers, C.; Herlt, E., Exact Solutions of Einstein’s Field Equations (2009), Cambridge: Cambridge University Press, Cambridge · Zbl 1179.83005
[67] Friedman, J. L.; Stergioulas, N., Rotating Relativistic Stars (2013), Cambridge: Cambridge University Press, Cambridge · Zbl 1306.85001
[68] Pfister, H., On the history of the so-called Lense-Thirring effect, Gen. Relativ. Gravit., 39, 1735-1748 (2007) · Zbl 1150.83001 · doi:10.1007/s10714-007-0521-4
[69] Ciufolini, I.; Pavlis, E. C., A confirmation of the general relativistic prediction of the Lense-Thirring effect, Nature, 431, 958-960 (2004) · doi:10.1038/nature03007
[70] Tooper, R. F., General relativistic polytropic fluid spheres, Astrophys. J., 140, 434 (1964) · Zbl 0128.21401 · doi:10.1086/147939
[71] Visser, M., Rastall gravity is equivalent to Einstein gravity, Phys. Lett. B, 782, 83-86 (2018) · Zbl 1404.83009 · doi:10.1016/j.physletb.2018.05.028
[72] Darabi, F.; Moradpour, H.; Licata, I.; Heydarzade, Y.; Corda, C., Einstein and Rastall theories of gravitation in comparison, Eur. Phys. J. C, 78, 25 (2018) · doi:10.1140/epjc/s10052-017-5502-5
[73] Lobo, I. P.; Richarte, M. G.; Graca, J. M.; Moradpour, H., Thin-shell wormholes in Rastall gravity, Eur. Phys. J. Plus, 135, 550 (2020) · doi:10.1140/epjp/s13360-020-00553-y
[74] Weinberg, S., Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (1973), New York: Wiley, New York
[75] Komar, A., Covariant conservation laws in general relativity, Phys. Rev., 113, 934 (1959) · Zbl 0086.22103 · doi:10.1103/physrev.113.934
[76] Wald, R. M., General Relativity (2010), Chicago, IL: University of Chicago Press, Chicago, IL
[77] Arnowitt, R.; Deser, S.; Misner, C. W., Dynamical structure and definition of energy in general relativity, Phys. Rev., 116, 1322 (1959) · Zbl 0092.20704 · doi:10.1103/physrev.116.1322
[78] Arnowitt, R.; Deser, S.; Misner, C. W., Canonical variables for general relativity, Phys. Rev., 117, 1595 (1960) · Zbl 0091.21203 · doi:10.1103/physrev.117.1595
[79] Cook, G. B.; Shapiro, S. L.; Teukolsky, S. A., Spin-up of a rapidly rotating star by angular momentum loss—effects of general relativity, Astrophys. J., 398, 203-223 (1992) · doi:10.1086/171849
[80] Stergioulas, N.; Friedman, J. L., Comparing models of rapidly rotating relativistic stars constructed by two numerical methods (1994)
[81] Stergioulas, N., The structure and stability of rotating relativistic stars, PhD Thesis (1996), Milwaukee
[82] Stoeckly, R., Polytropi models in fast, non-uniform rotation, Astrophys. J., 142, 208-228 (1965) · doi:10.1086/148278
[83] Ray, S.; Espindola, A. L.; Malheiro, M.; Lemos, J. P.; Zanchin, V. T., Electrically charged compact stars and formation of charged black holes, Phys. Rev. D, 68 (2003) · doi:10.1103/physrevd.68.084004
[84] Abbott, B. P., GW170817: observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.161101
[85] Landry, P.; Essick, R.; Chatziioannou, K., Nonparametric constraints on neutron star matter with existing and upcoming gravitational wave and pulsar observations, Phys. Rev. D, 101 (2020) · doi:10.1103/physrevd.101.123007
[86] Abbott, B. P., Gw170817: measurements of neutron star radii and equation of state, Phys. Rev. Lett., 121 (2018) · doi:10.1103/PhysRevLett.121.161101
[87] Lattimer, J. M.; Prakash, M., Nuclear matter and its role in supernovae, neutron stars and compact object binary mergers, Phys. Rep., 333-334, 121-146 (2000) · doi:10.1016/s0370-1573(00)00019-3
[88] Bejger, M.; Haensel, P., Moments of inertia for neutron and strange stars: limits derived for the Crab pulsar, Astron. Astrophys., 396, 917-921 (2002) · doi:10.1051/0004-6361:20021241
[89] Tello-Ortiz, F.; Maurya, S.; Errehymy, A.; Singh, K. N.; Daoud, M., Anisotropic relativistic fluid spheres: an embedding class I approach, Eur. Phys. J. C, 79, 885 (2019) · doi:10.1140/epjc/s10052-019-7366-3
[90] Singh, K. N.; Maurya, S.; Jasim, M.; Rahaman, F., Minimally deformed anisotropic model of class one space-time by gravitational decoupling, Eur. Phys. J. C, 79, 851 (2019) · doi:10.1140/epjc/s10052-019-7377-0
[91] Singh, K. N.; Bisht, R. K.; Maurya, S. K.; Pant, N., Static fluid spheres admitting Karmarkar condition, Chin. Phys. C, 44 (2020) · doi:10.1088/1674-1137/44/3/035101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.