×

Anisotropic compact stars in non-conservative theory of gravity. (English) Zbl 1404.83096

Summary: We develop anisotropic compact stars in the scenario of non-conservative theory such as Rastall theory. We consider the Krori and Barua static spherically symmetric metrics and find their unknown constants by using the masses and radii of well-known compact stars. We investigate the anisotropic compact star through various physical quantities such as anisotropic behavior, regularity conditions, stability and surface redshift. It is found that the present compact stars are stable and are in the stellar equilibrium form.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
85A05 Galactic and stellar dynamics
83F05 Relativistic cosmology
Full Text: DOI

References:

[1] Durgapal, M. C. and Fuloria, R. S., Analytic relativistic model for a superdense star, Gen. Relativ. Gravit.17 (1985) 671.
[2] Gupta, Y. K. and Maurya, S. K., A class of charged analogues of Durgapal and Fuloria superdense star, Astrophys. Space Sci.331 (2011) 135. · Zbl 1209.83010
[3] M. H. Murad and S. Fatema, Some new Wyman-Adler type static relativistic charged anisotropic fluid spheres compatible to self-bound stellar modeling, arXiv:1408.5126 (2014).
[4] Brans, C. and Dicke, R. H., Mach’s principle and a relativistic theory of gravitation, Phys. Rev.124 (1961) 925. · Zbl 0103.21402
[5] Cartan, É., Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion, Acad. Sci. Paris, Comptes. Rend.174 (1922) 593-595. · JFM 48.0854.02
[6] Cartan, É., Sur les variétés à connexion affine et la théorie de la relativité généralisée, Ann. Sci. Norm. Sup. Sér.40 (1923) 325-412. · JFM 49.0542.02
[7] Rosen, N., Theory of gravitation, Phys. Rev. D3 (1971) 2317.
[8] Moffat, J. W., Nonsymmetric gravitational theory, Phys. Lett. B355 (1995) 447. · Zbl 0997.83518
[9] Bekenstein, J. D., Relativistic gravitation theory for the MOND paradigm, Phys. Rev. D70 (2004) 083509.
[10] Rastall, P., Generalization of the einstein theory, Phys. Rev. D6 (1972) 3357. · Zbl 0959.83525
[11] Rastall, P., A theory of gravity, Can. J. Phys.54 (1976) 66. · Zbl 1043.83558
[12] Bondi, H. and Gold, T., The steady-state theory of the expanding universe, Mon. Not. Royal Astr. Soc.108 (1948) 252. · Zbl 0031.09603
[13] Hoyle, F., A new model for the expanding universe, Mon. Not. Royal Astr. Soc.108 (1948) 372. · Zbl 0031.38304
[14] Jordan, P., Formation of the stars and development of the universe, Nature164 (1949) 637. · Zbl 0032.38304
[15] Nojiri, S. and Odintsov, S. D., Gravity assisted dark energy dominance and cosmic acceleration, Phys. Lett. B599 (2004) 137. · Zbl 1066.83017
[16] Allemandi, G., Borowiec, A., Francaviglia, M. and Odintsov, S. D., Dark energy dominance and cosmic acceleration in first-order formalism, Phys. Rev. D72 (2005) 063505.
[17] Koivisto, T., Covariant conservation of energy momentum in modified gravities, Class. Quantum Grav.23 (2006) 4289. · Zbl 1096.83056
[18] Bertolami, O., Boehmer, C. G., Harko, T. and Lobo, F. S. N., Extra force in \(f(R)\) modified theories of gravity, Phys. Rev. D75 (2007) 104016.
[19] Harko, T. and Lobo, F. S. N., Generalized curvature-matter couplings in modified gravity, Galaxies2 (2014) 410.
[20] Gibbons, G. W. and Hawking, S. W., Cosmological event horizons, thermodynamics, and particle creation, Phys. Rev. D15 (1977) 2738.
[21] Parker, L., Quantized fields and particle creation in expanding universes, Phys. Rev. D3 (1971) 346. · Zbl 0186.58603
[22] Ford, L. H., Gravitational particle creation and inflation, Phys. Rev. D35 (1987) 2955.
[23] Maurya, S. K., Gupta, Y. K., Ray, S. and Dayanandan, B., Anisotropic models for compact stars, Eur. Phys. J. C75 (2015) 225.
[24] Abbas, G., Kanwal, A. and Zubair, M., Anisotropic compact stars in \(f(T)\) gravity, Astrophys. Space Sci.357 (2015) 109.
[25] Al-Rawaf, A. S. and Taha, M. O., A resolution of the cosmological age puzzle, Phys. Lett. B366 (1996) 69. · Zbl 0875.83034
[26] Al-Rawaf, A. S. and Taha, M. O., Cosmology of general relativity without energy- moment.m conservation, Gen. Relativ. Gravit.28 (1996) 935. · Zbl 0875.83034
[27] Smalley, L. L., Variational principle for a prototype Rastall theory of gravitation, Nuovo Cim. B80(1) (1984) 42.
[28] Bronnikov, K. A., Fabris, J. C., Piattella, O. F. and Santos, E. C., Static, spherically symmetric solutions with a scalar field in Rastall gravity, Gen. Relativ. Gravit.48(12) (2016) 162. · Zbl 1370.83072
[29] Batista, C. E. M., Fabris, J. C. and Daouda, M. H., Testing the Rastall’s theory using matter power spectrum, Nuovo Cim. B125 (2010) 957.
[30] Fabris, J. C., Guio, T. C. C., Daouda, M. Hamani and Piattella, O. F., Scalar models for the generalized Chaplygin gas and the structure formation constraints, Grav. Cosmol.17 (2011) 259. · Zbl 1252.83106
[31] Fabris, J. C., Daouda, M. H. and Piattella, O. F., Note on the evolution of the gravitational potential in Rastall scalar field theories, Phys. Lett. B711(34) (2012) 232-237.
[32] Capone, M., Cardone, V. F. and Ruggiero, M. L., Accelerating cosmology in Rastall’s theory, Nuovo Cim. B125 (2011) 1133.
[33] Santos, A. F. and Ulhoa, S. C., On Gdel-type solution in Rastall’s gravity, Modern Phys. Lett. A30 (2015) 1550039. · Zbl 1311.83050
[34] Moradpour, H., Thermodynamics of flat FLRW universe in Rastall theory, Phys. Lett. B757 (2016) 187. · Zbl 1360.83056
[35] Moradpour, H. and Salako, I. G., Thermodynamic analysis of the static spherically symmetric field equations in Rastall theory, Adv. High Energy Phys.2016 (2016) 3492796. · Zbl 1366.83083
[36] Moradpour, H., Sadeghnezhad, N. and Hendi, S. H., Traversable asymptotically flat wormholes in Rastall gravity, Can. J. Phys.95 (2017) 1257.
[37] Maurya, S. K. and Gupta, Y. K., Charged fluid to anisotropic fluid distribution in general relativity, Astrophys. Space Sci.344 (2013) 243. · Zbl 1276.85010
[38] Tolman, R. C., Static solutions of Einstein’s field equations for spheres of fluid, Phys. Rev.55 (1939) 364. · JFM 65.1048.02
[39] Oppenheimer, J. R. and Volkoff, G. M., On massive neutron cores, Phys. Rev.55 (1939) 374. · Zbl 0020.28501
[40] Krori, K. D. and Barua, J., A singularity-free solution for a charged fluid sphere in general relativity, J. Phys. A, Math. Gen.8 (1975) 508. · Zbl 0304.76049
[41] Herrera, L., Cracking of self-gravitating compact objects, Phys. Lett. A165 (1992) 206.
[42] Buchdahl, H. A., General relativistic fluid spheres, Phys. Rev.116 (1959) 1027. · Zbl 0092.20802
[43] Mak, M. K. and Harko, T., Anisotropic stars in general relativity, Proc. R. Soc. A459 (2003) 393. · Zbl 1029.83023
[44] Mak, M. K. and Harko, T., Can the galactic rotation curves be explained in brane world models?Phys. Rev. D70 (2004) 024010.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.