×

Impact of the Rastall parameter on perfect fluid spheres. (English) Zbl 1415.83043

Summary: We examine the effects of the Rastall parameter on the behaviour of spherically symmetric static distributions of perfect fluid matter. It was claimed by M. Visser [Phys. Lett., B 782, 83–86 (2018; Zbl 1404.83009)] that the Rastall proposition is completely equivalent to the Einstein theory. While many authors have raised contrary arguments, our intention is to analyse the properties of Rastall gravity through variation of the Rastall parameter in the context of perfect fluids spheres that may be used to model neutron stars or cold fluid planets. This analysis also serves to counter the claim that Rastall gravity is equivalent to the standard Einstein theory. It turns out that the condition of pressure isotropy is exactly the same as for Einstein gravity and hence that any known solution of the Einstein equations may be used to study the effects of the Rastall dynamical quantities. Moreover, by choosing the well studied Tolman metrics, we discover that in the majority of cases there is substantial deviation from the Einstein case when the Rastall parameter vanishes and in cases where the Einstein model displays defective behaviour, certain Rastall models obey the well known elementary requirements for physical plausibility. These empirical findings do not support the idea that Rastall theory is equivalent to Einstein theory as several deviations in physical behaviour are displayed as counter-examples.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
85A15 Galactic and stellar structure

Citations:

Zbl 1404.83009

References:

[1] Perlmutter, S., Astrophys. J., 517, 565 (1999); Riess, A. G., Astron. J., 116, 1009 (1998); Tonry, J. L., Astrophys. J., 594, 1 (2003); Knop, R. A., Astrophys. J., 598, 102 (2003); Riess, A. G., Astrophys. J., 607, 665 (2004); Hinshaw, G., Astrophys. J. Suppl., 148, 135 (2003)
[2] Eisenstein, D. J., Astrophys. J., 633, 560 (2005); Percival, W. J., Mon. Not. R. Astron. Soc., 401, 2148 (2010)
[3] Spergel, D. N., Astrophys. J., 148, 175 (2003)
[4] Nojiri, S.; Odintsov, S. D.; Sasaki, M., Phys. Rev. D, 71, 123509 (2005)
[5] Nojiri, S.; Odintsov, S. D., Phys. Lett. B, 631, 1 (2005) · Zbl 1247.83292
[6] Dadhich, N.; Hansraj, S.; Maharaj, S. D., Phys. Rev. D, 93, 044072 (2016)
[7] Dadhich, N.; Hansraj, S.; Chilambwe, B., Internat. J. Modern Phys. D, 26, 1750056 (2017) · Zbl 1367.85004
[8] Buchdahl, H. A., Mon. Not. R. Astron. Soc., 150, 1 (1970)
[9] Capozziello, S.; Cardone, V. F.; Carloni, S.; Troisi, A., Internat. J. Modern Phys. D, 12, 1969 (2003)
[10] Carroll, S. M.; Duvvuri, V.; Trodden, M.; Turner, M. S., Phys. Rev. D, 70, 043528 (2004)
[11] Nojiri, S.; Odintsov, S. D., Phys. Rev. D, 68, 123512 (2003)
[12] Correa, R. A.C.; Moraes, P. H.R. S., Eur. Phys. J. C, 76, 100 (2016)
[13] Moraes, P. H.R. S.; Santos, J. R.L., Eur. Phys. J. C, 76, 60 (2016)
[14] Baffou, E. H., Phys. Rev. D, 92, 084043 (2015)
[15] Shabani, H.; Farhoudi, M., Phys. Rev. D, 90, 044031 (2014)
[16] Myrzakulov, R., Eur. Phys. J. C, 72, 2203 (2012)
[17] Jamil, M.; Momeni, D.; Raza, M.; Myrzakulov, R., Eur. Phys. J. C, 72, 1999 (2012)
[18] Sharif, M.; Zubair, M., J. Cosmol. Astropart. Phys., 1203, 028 (2012)
[19] Alvarenga, F. G., Phys. Rev. D, 87, 103526 (2013)
[20] Ovalle, J.; Linares, F., Phys. Rev. D, 88, 104026 (2013)
[21] Carvalho, G. A., Eur. Phys. J. C, 77, 871 (2017)
[22] Das, Amit, Eur. Phys. J. C, 76, 654 (2016)
[23] Zaeem-ul Haq Bhatti, M.; Sharif, M.; Yousaf, Z.; Ilyas, M., Internat. J. Modern Phys. D, 27, 1850044 (2017)
[24] Rastall, P., Phys. Rev. D, 6, 3357 (1972) · Zbl 0959.83525
[25] Rastall, P., Can. J. Phys., 54, 66 (1976)
[26] Batista, C. E.M., Phys. Rev. D, 85, 084008 (2012)
[27] Heydarzade, Y.; Moradpour, H.; Darabi, F., Can. J. Phys., 95, 1253-1256 (2017)
[28] Kumar, R.; Ghosh, S. G., Eur. Phys. J. C, 78, 750 (2018)
[29] Heydarzade, Y.; Darabi, F., Phys. Lett. B, 771, 365 (2017) · Zbl 1372.83061
[30] Oliveira, A. M.; Velten, H. E.S.; Fabris, J. C.; Casarini, L., Phys. Rev. D, 92, 044020 (2015)
[31] Moradpour, H.; Salako, Ines G., Adv. High Energy Phys., 2016, 3492796 (2016) · Zbl 1366.83083
[32] Moradpour, H., Phys. Lett. B, 757, 187 (2016) · Zbl 1360.83056
[33] Moradpour, H.; Sadeghnezhad, N.; Hendi, S. H., Can. J. Phys., 95, 1257 (2017)
[34] Stephani, H.; Kramer, D.; MacCallum, M.; Hoenselaers, C.; Herlt, E., Exact Solutions of Einstein’s Field Equations (2003), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1057.83004
[35] Delgaty, M. S.R.; Lake, K., Comput. Phys. Comm., 115, 395 (1988)
[36] Visser, M., Phys. Lett. B, 782, 83 (2018) · Zbl 1404.83009
[37] Darabi, F., Eur. Phys. J. C, 78, 25 (2018)
[38] Tolman, R. C., Phys. Rev., 55, 364 (1939) · Zbl 0020.28407
[39] http://www.wolfram.com/mathematica/; http://www.wolfram.com/mathematica/
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.