×

Two dimensional analysis and optimization of hybrid MDCD-TENO schemes. (English) Zbl 1481.65158

Summary: In this article, a quasi-linear semi-discrete analysis of shock capturing schemes in two dimensional wavenumber space is proposed. Using the dispersion relation of the two dimensional advection and linearized Euler equations, the spectral properties of a spatial scheme can be quantified in two dimensional wavenumber space. A hybrid scheme (HYB-MDCD-TENO6) which combines the merits of the minimum dispersion and controllable dissipation (MDCD) scheme with the targeted essentially non-oscillatory (TENO) scheme was developed and tested. Using the two dimensional analysis framework, the scheme was spectrally optimized in such a way that the linear part of the scheme can be separately optimized for its dispersion and dissipation properties. In order to compare its performance against existing schemes, the proposed scheme as well as the baseline schemes were tested against a series of benchmark test cases. It was found that the HYB-MDCD-TENO6 scheme provides similar or better resolution as compared to the baseline TENO6 schemes for the same grid size.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N06 Finite difference methods for boundary value problems involving PDEs
65T50 Numerical methods for discrete and fast Fourier transforms
76N15 Gas dynamics (general theory)
76L05 Shock waves and blast waves in fluid mechanics
35Q31 Euler equations
76M20 Finite difference methods applied to problems in fluid mechanics

References:

[1] Adams, NA; Shariff, K., A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems, J. Comput. Phys., 127, 27-51 (1996) · Zbl 0859.76041 · doi:10.1006/jcph.1996.0156
[2] Brachet, ME; Meiron, DI; Orszag, SA; Nickel, BG; Morf, RH; Frisch, U., Small-scale structure of the Taylor-Green vortex, J. Fluid Mech., 130, 411-452 (1983) · Zbl 0517.76033 · doi:10.1017/S0022112083001159
[3] Costa, B.; Don, WS, High order Hybrid central WENO finite difference scheme for conservation laws, J. Comput. Appl. Math., 204, 209-218 (2007) · Zbl 1115.65091 · doi:10.1016/j.cam.2006.01.039
[4] Fu, L., A hybrid method with TENO based discontinuity indicator for hyperbolic conservation law, Commun. Comput. Phys., 26, 973-1007 (2018) · Zbl 1518.65098 · doi:10.4208/cicp.OA-2018-0176
[5] Fu, L.; Hu, XY; Adams, NA, Improved five and six point targeted essentially nonoscillatory schemes with adaptive dissipation, AIAA J. (2018) · doi:10.2514/1.J057370
[6] Fu, L.; Hu, XY; Adams, NA, A family of high-order targeted ENO schemes for compressible-fluid simulations, J. Comput. Phys., 305, 333-359 (2016) · Zbl 1349.76462 · doi:10.1016/j.jcp.2015.10.037
[7] Fu, L.; Hu, XY; Adams, NA, Targeted ENO schemes with tailored resolution property for hyperbolic conservation laws, J. Comput. Phys., 349, 97-121 (2017) · Zbl 1380.65154 · doi:10.1016/j.jcp.2017.07.054
[8] Hu, X.Y., Tritschler, V.K., Pirozzoli, S., Adams, N.A.: Dispersion-dissipation condition for finite difference schemes. arXiv-Physics-Fluid Dynamics (2014). arXiv:1204.5088v2
[9] Jiang, GS; Shu, CW, Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228 (1996) · Zbl 0877.65065 · doi:10.1006/jcph.1996.0130
[10] Kemm, F., On the proper setup of the double Mach reflection as a test case for the resolution of gas dynamics codes, Comput. Fluids, 132, 72-75 (2016) · Zbl 1390.76275 · doi:10.1016/j.compfluid.2016.04.008
[11] Kim, JW; Lee, DJ, Optimized compact finite difference schemes with maximum resolution, AIAA J., 34, 887-893 (1996) · Zbl 0900.76317 · doi:10.2514/3.13164
[12] Li, XL; Leng, Y.; He, ZW, Optimized sixth-order monotonicity-preserving scheme by nonlinear spectral analysis, Int. J. Numer. Methods Fluids, 73, 560-577 (2012) · Zbl 1455.65135 · doi:10.1002/fld.3812
[13] Li, Y., Chen, C., Ren, Y.X.: A class of high-order finite difference schemes with minimized dispersion and adaptive dissipation for solving compressible flows. J. Comput. Phys. 448, (2022). doi:10.1016/j.jcp.2021.110770 · Zbl 1537.76111
[14] Liu, XD; Osher, S.; Chan, T., Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115, 200-212 (1994) · Zbl 0811.65076 · doi:10.1006/jcph.1994.1187
[15] Peng, J.; Zhai, CL; Ni, G.; Yong, H.; Shen, Y., An adaptive characteristic-wise reconstruction WENO-Z scheme for gas dynamic euler equations, Comput. Fluids, 179, 34-51 (2019) · Zbl 1411.76106 · doi:10.1016/j.compfluid.2018.08.008
[16] Pirrozoli, S., Conservative hybrid compact-WENO schemes for shock-turbulence interaction, J. Comput. Phys., 178, 81-117 (2002) · Zbl 1045.76029 · doi:10.1006/jcph.2002.7021
[17] Pirrozoli, S., On spectral properties of shock-capturing schemes, J. Comput. Phys., 219, 489-497 (2006) · Zbl 1103.76040 · doi:10.1016/j.jcp.2006.07.009
[18] Ren, YX; Liu, M.; Zhang, H., A characteristic wise hybrid compact WENO scheme for solving hyperbolic conservation laws, J. Comput. Phys., 192, 365-386 (2003) · Zbl 1037.65090 · doi:10.1016/j.jcp.2003.07.006
[19] Sescu, A., Multidimensional optimization of finite difference schemes for computational aeroacoustics, J. Comput. Phys., 227, 4563-4588 (2008) · Zbl 1388.76213 · doi:10.1016/j.jcp.2008.01.008
[20] Shen, Y.; Yang, G., Hybrid finite compact-WENO schemes for shock calculation, Int. J. Numer. Methods Fluids, 53, 531-560 (2007) · Zbl 1104.76065 · doi:10.1002/fld.1286
[21] Sun, ZS; Ren, YS; Larricq, C.; Zhang, SY; Yang, YC, A class of finite difference schemes with low dispersion and controllable dissipation for DNS of compressible turbulence, J. Comput. Phys., 230, 4616-4635 (2011) · Zbl 1416.76192 · doi:10.1016/j.jcp.2011.02.038
[22] Tam, CKW; Webb, JC, Dispersion relation preserving finite difference schemes for computational acoustics, J. Comput. Phys., 107, 262-281 (1993) · Zbl 0790.76057 · doi:10.1006/jcph.1993.1142
[23] Tan, R.: A framework for multidimensional analysis and development of numerical schemes. Ph.D. thesis, University of Melbourne, Minerva Access (2020). http://hdl.handle.net/11343/241402
[24] Tan, R., Ooi, A., Sandberg, R.: Numerical anisotropy of the linearised Euler equations under spatial and temporal discretization for a hybrid spectral finite difference method. In: 21st Australasian Fluid Mechanics Conference pp. 1-4 (2018). https://people.eng.unimelb.edu.au/imarusic/proceedings/21
[25] Tan, R.; Ooi, A.; Sandberg, R., Two dimensional analysis of hybrid spectral/finite difference schemes for linearized compressible Navier-Stokes equations, J. Sci. Comput., 87, 1-42 (2021) · Zbl 1471.65165 · doi:10.1007/s10915-021-01442-x
[26] Weirs, V.G., Candler, G.V.: Optimization of weighted ENO schemes for DNS of compressible turbulence. In: 13th Computational Fluid Dynamics Conference, Snowmass Village, USA, pp. 528-538 (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.