×

Multidimensional optimization of finite difference schemes for computational aeroacoustics. (English) Zbl 1388.76213

Summary: Because of the long propagation distances, Computational Aeroacoustics schemes must propagate the waves at the correct wave speeds and lower the isotropy error as much as possible. The spatial differencing schemes are most frequently analyzed and optimized for one-dimensional test cases. Therefore, in multidimensional problems such optimized schemes may not have isotropic behavior. In this work, optimized finite difference schemes for multidimensional Computational Aeroacoustics are derived which are designed to have improved isotropy compared to existing schemes. The derivation is performed based on both Taylor series expansion and Fourier analysis. Various explicit centered finite difference schemes and the associated boundary stencils have been derived and analyzed. The isotropy corrector factor, a parameter of the schemes, can be determined by minimizing the integrated error between the phase or group velocities on different spatial directions. The order of accuracy of the optimized schemes is the same as that of the classical schemes, the advantage being in reducing the isotropy error. The present schemes are restricted to equally-spaced Cartesian grids, so the generalized curvilinear transformation method and Cartesian grid methods are good candidates. The optimized schemes are tested by solving various multidimensional problems of Aeroacoustics.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
76Q05 Hydro- and aero-acoustics
Full Text: DOI

References:

[1] Ashcroft, G.; Zhang, X., Optimized prefactored compact schemes, J. Comput. Phys., 190, 459-477 (2003) · Zbl 1076.76554
[2] Bogey, C.; Bailly, C., A family of low dispersive and low dissipative explicit schemes for flow and noise computation, J. Comput. Phys., 194, 194-214 (2004) · Zbl 1042.76044
[3] Eswaran, De A. K., Analysis of a new high resolution upwind compact scheme, J. Comput. Phys., 218, 398-416 (2006) · Zbl 1103.65092
[4] J.C. Hardin, J.R. Ristorcelli, C.K.W. Tam, ICASE/LaRC Workshop on benchmark problems in computational aeroacoustics (CAA), NASA Conference Publication 3300, 1995.; J.C. Hardin, J.R. Ristorcelli, C.K.W. Tam, ICASE/LaRC Workshop on benchmark problems in computational aeroacoustics (CAA), NASA Conference Publication 3300, 1995.
[5] Hixon, R., Radiation and wall boundary conditions for Computational Aeroacoustics: a review, Int. J. Comput. Fluid Dyn., 18, 523-531 (2004) · Zbl 1065.76178
[6] Hixon, R., Prefactored small-stencil compact schemes, J. Comput. Phys., 165, 522-541 (2000) · Zbl 0990.76059
[7] R. Hixon, V. Allampali, N. Nallasamy, S. Sawyer, High-accuracy large-step explicit Runge-Kutta (HALE-RK) schemes for computational aeroacoustics, AIAA Paper 2006-0797, 2006.; R. Hixon, V. Allampali, N. Nallasamy, S. Sawyer, High-accuracy large-step explicit Runge-Kutta (HALE-RK) schemes for computational aeroacoustics, AIAA Paper 2006-0797, 2006. · Zbl 1171.76039
[8] Hixon, R.; Shih, S.-H.; Mankbadi, R. R., Evaluation of boundary conditions for Computational Aeroacoustics, AIAA J., 33, 2012 (1995) · Zbl 0848.76046
[9] Hixon, R.; Turkel, E., Compact implicit MacCormack-type schemes with high accuracy, J. Comput. Phys., 158, 51-70 (2000) · Zbl 0958.76059
[10] Hu, F. Q., Absorbing boundary conditions, Int. J. Comput. Fluid Dyn., 18, 513-552 (2004) · Zbl 1065.76593
[11] Hu, F. Q.; Hussaini, M. Y.; Manthey, J. L., Low-dissipation and -dispersion Runge-Kutta schemes for Computational Acoustics, J. Comput. Phys., 124, 177-191 (1996) · Zbl 0849.76046
[12] Kennedy, C. A.; Carpenter, M. H., Several new numerical methods for compressible shear-layer simulations, Appl. Numer. Simulat. (1997)
[13] Kim, J. W.; Lee, D. J., Optimized compact finite difference schemes with maximum resolution, AIAA J., 34, 5, 887-893 (1996) · Zbl 0900.76317
[14] Kurbatskii, K. A.; Mankbadi, R. R., Review of Computational Aeroacoustics algorithms, Int. J. Comput. Fluid Dyn., 18, 533-546 (2004) · Zbl 1065.76595
[15] Lele, S. K., Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103, 16-42 (1992) · Zbl 0759.65006
[16] Li, Y., Wave-number extended high-order upwind-biased finite-difference schemes for convective scalar transport, J. Comput. Phys., 133, 235-255 (1997) · Zbl 0878.65071
[17] Lin, R. K.; Sheu, Tony W. H., Application of dispersion-relation-preserving theory to develop a two-dimensional convection-diffusion scheme, J. Comput. Phys., 208, 493-526 (2005) · Zbl 1073.65093
[18] Mahesh, K., A family of high order finite difference schemes with good spectral resolution, J. Comput. Phys., 145, 332-358 (1998) · Zbl 0926.76081
[19] A. Sescu, R. Hixon, A.A. Afjeh, Anisotropy correction of two dimensional finite difference schemes for computational aeroacoustics, AIAA Paper 2007-3495, 2007.; A. Sescu, R. Hixon, A.A. Afjeh, Anisotropy correction of two dimensional finite difference schemes for computational aeroacoustics, AIAA Paper 2007-3495, 2007. · Zbl 1388.76213
[20] A. Sescu, R. Hixon, A.A. Afjeh, Optimized finite difference schemes for multi-dimensional wave propagation, AIAA Paper 2007-4585, 2007.; A. Sescu, R. Hixon, A.A. Afjeh, Optimized finite difference schemes for multi-dimensional wave propagation, AIAA Paper 2007-4585, 2007. · Zbl 1162.76039
[21] Tam, C. K.W., Computational Aeroacoustics: an overview of computational challenges and applications, Int. J. Comput. Fluid Dyn., 18, 547-567 (2004) · Zbl 1065.76180
[22] Tam, C. K.W.; Webb, J. C., Dispersion-relation-preserving finite difference schemes for Computational Aeroacoustics, J. Comput. Phys., 107, 262-281 (1993) · Zbl 0790.76057
[23] Tam, C. K.W.; Webb, J. C., Radiation boundary condition and anisotropy correction for finite difference solutions of the Helmholtz equation, J. Comput. Phys., 113, 122-133 (1994) · Zbl 0810.65094
[24] Trefethen, L. N., Group velocity in finite difference schemes, SIAM Rev., 24, 113 (1982) · Zbl 0487.65055
[25] R. Vichnevetsky and J.B. Bowles, Fourier analysis of numerical approximations of hyperbolic equations, SIAM Studies in Applied Mathematics, Philadelphia, 1982.; R. Vichnevetsky and J.B. Bowles, Fourier analysis of numerical approximations of hyperbolic equations, SIAM Studies in Applied Mathematics, Philadelphia, 1982. · Zbl 0495.65041
[26] Xiao, F.; Tang, X. H.; Zhang, X. J., Comparison of Taylor finite difference and window finite difference and their application in FDTD, J. Comput. Phys., 193, 516-534 (2006) · Zbl 1103.65097
[27] Zingg, D. W.; Lomax, H., Finite difference schemes on regular triangular grids, J. Comput. Phys., 108, 306-313 (1993) · Zbl 0804.65093
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.