×

A hybrid method with TENO based discontinuity indicator for hyperbolic conservation laws. (English) Zbl 1518.65098

The author proposes a new discontinuity indicator based on the TENO weighting strategy. This new discontinuity indicator can distinguish the nonsmooth scales from smooth regions in spectral space. Based on the new discontinuity indicator, a hybrid shock-capturing scheme is developed in combination with the fourth-order TENO6 scheme. Several numerical tests are presented to show the efficiency of the proposed scheme. Numerical experiments demonstrate that the proposed indicator can locate the discontinuities accurately. Compared to the standard TENO6 scheme, the efficiency speedup by exploiting the proposed hybrid scheme is remarkable.

MSC:

65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76J20 Supersonic flows
76N15 Gas dynamics (general theory)
76F05 Isotropic turbulence; homogeneous turbulence
35L65 Hyperbolic conservation laws
35Q35 PDEs in connection with fluid mechanics

Software:

Shadowfax
Full Text: DOI

References:

[1] A. Harten, B. Engquist, S. Osher, S. R. Chakravarthy, Uniformly high order accurate essen-tially non-oscillatory schemes, III, J. Comput. Phys. 71 (1987) 231-303. · Zbl 0652.65067
[2] X. D. Liu, S. Osher, T. Chan, Weighted Essentially Non-oscillatory Schemes, J. Comput. Phys. 115 (1994) 200-212. · Zbl 0811.65076
[3] G. S. Jiang, C.-W. Shu, Efficient Implementation of Weighted ENO Schemes, J. Comput. Phys. 126 (1) (1996) 202-228. · Zbl 0877.65065
[4] A. K. Henrick, T. Aslam, J. M. Powers, Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points, J. Comput. Phys. 207 (2005) 542-567. · Zbl 1072.65114
[5] R. Borges, M. Carmona, B. Costa, W. S. Don, An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws, J. Comput. Phys. 227 (2008) 3191-3211. · Zbl 1136.65076
[6] V. Weirs, G. Candler, Optimization of weighted ENO schemes for DNS of compressible tur-bulence, AIAA Paper (1997) 97-1940.
[7] M. P. Martín, E. M. Taylor, M. Wu, V. G. Weirs, A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence, Journal of Computa-tional Physics 220 (1) (2006) 270-289. · Zbl 1103.76028
[8] F. Acker, R. d. R. Borges, B. Costa, An improved WENO-Z scheme, Journal of Computational Physics. · Zbl 1349.65260
[9] D. Hill, D. Pullin, Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks, J. Comput. Phys. 194 (2004) 435-450. · Zbl 1100.76030
[10] G. Gerolymos, D. Sénéchal, I. Vallet, Very-high-order WENO schemes, J. Comput. Phys. 228 (2009) 8481-8524. · Zbl 1176.65088
[11] V. Titarev, E. Toro, Finite-volume WENO schemes for three-dimensional conservation laws, J. Comput. Phys. 201 (1) (2004) 238-260. · Zbl 1059.65078
[12] S. Pirozzoli, Numerical methods for high-speed flows, Annual review of fluid mechanics 43 (2011) 163-194. · Zbl 1299.76103
[13] J. Larsson, B. Gustafsson, Stability criteria for hybrid difference methods, Journal of Com-putational Physics 227 (5) (2008) 2886-2898. · Zbl 1135.65369
[14] N. A. Adams, K. Shariff, A High-Resolution Hybrid Compact-ENO Scheme for Shock-Turbulence Interaction Problems, J. Comput. Phys. 127 (1) (1996) 27-51. · Zbl 0859.76041
[15] S. Pirozzoli, Conservative hybrid compact-WENO schemes for shock-turbulence interaction, Journal of Computational Physics 178 (1) (2002) 81-117. · Zbl 1045.76029
[16] Y.-X. Ren, H. Zhang, et al., A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws, Journal of Computational Physics 192 (2) (2003) 365-386. · Zbl 1037.65090
[17] J. Fernández-Fidalgo, X. Nogueira, L. Ramírez, I. Colominas, An a posteriori, efficient, high-spectral resolution hybrid finite-difference method for compressible flows, Computer Meth-ods in Applied Mechanics and Engineering 335 (2018) 91-127. · Zbl 1440.76105
[18] E. Johnsen, J. Larsson, A. V. Bhagatwala, W. H. Cabot, P. Moin, B. J. Olson, P. S. Rawat, S. K. Shankar, B. Sjögreen, H. Yee, et al., Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves, Journal of Computational Physics 229 (4) (2010) 1213-1237. · Zbl 1329.76138
[19] G. Li, J. Qiu, Hybrid weighted essentially non-oscillatory schemes with different indicators, Journal of Computational Physics 229 (21) (2010) 8105-8129. · Zbl 1197.65123
[20] W.-S. Don, Z. Gao, P. Li, X. Wen, Hybrid Compact-WENO Finite Difference Scheme with Conjugate Fourier Shock Detection Algorithm for Hyperbolic Conservation Laws, SIAM Journal on Scientific Computing 38 (2) (2016) A691-A711. · Zbl 1382.65241
[21] C. H. Kim, K.-I. You, Y. Ha, Hybrid Finite Difference Weighted Essentially Non-oscillatory Schemes for the Compressible Ideal Magnetohydrodynamics Equation, Journal of Scientific Computing (2017) 1-24.
[22] B. Cockburn, C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, Mathematics of computation 52 (186) (1989) 411-435. · Zbl 0662.65083
[23] A. Harten, ENO schemes with subcell resolution, Journal of Computational Physics 83 (1) (1989) 148-184. · Zbl 0696.65078
[24] J. Qiu, C.-W. Shu, A Comparison of Troubled-Cell Indicators for Runge-Kutta Discontinuous Galerkin Methods Using Weighted Essentially Nonoscillatory Limiters, SIAM Journal on Scientific Computing 27 (3) (2005) 995-1013. · Zbl 1092.65084
[25] M. J. Vuik, J. K. Ryan, Multiwavelet troubled-cell indicator for discontinuity detection of discontinuous Galerkin schemes, Journal of Computational Physics 270 (2014) 138-160. · Zbl 1349.65490
[26] L. Fu, X. Y. Hu, N. A. Adams, A family of high-order targeted ENO schemes for compressible-fluid simulations, Journal of Computational Physics 305 (2016) 333-359. · Zbl 1349.76462
[27] L. Fu, X. Y. Hu, N. A. Adams, Targeted ENO schemes with tailored resolution property for hyperbolic conservation laws, Journal of Computational Physics 349 (2017) 97-121. · Zbl 1380.65154
[28] L. Fu, X. Y. Hu, N. A. Adams, A new class of adaptive high-order targeted ENO schemes for hyperbolic conservation laws, Journal of Computational Physics 374 (2018) 724-751. · Zbl 1416.65262
[29] L. Fu, X. Y. Hu, N. A. Adams, A targeted ENO scheme as implicit model for turbulent and genuine subgrid scales, Communications in Computational Physics 26 (2019) 311-345. · Zbl 1518.65087
[30] L. Fu, A low-dissipation finite-volume method based on a new TENO shock-capturing scheme, Computer Physics Communications 235 (2019) 25-39. · Zbl 07682884
[31] O. Haimovich, S. H. Frankel, Numerical simulations of compressible multicomponent and multiphase flow using a high-order targeted ENO (TENO) finite-volume method, Comput-ers & Fluids 146 (2017) 105-116. · Zbl 1390.76439
[32] Z. Sun, S. Inaba, F. Xiao, Boundary Variation Diminishing (BVD) reconstruction: A new approach to improve Godunov schemes, Journal of Computational Physics 322 (2016) 309-325. · Zbl 1351.76123
[33] A. Suresh, H. Huynh, Accurate monotonicity-preserving schemes with Runge-Kutta time stepping, Journal of Computational Physics 136 (1) (1997) 83-99. · Zbl 0886.65099
[34] D. S. Balsara, C.-W. Shu, Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy, Journal of Computational Physics 160 (2) (2000) 405-452. · Zbl 0961.65078
[35] P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, Journal of computational physics 43 (2) (1981) 357-372. · Zbl 0474.65066
[36] V. V. Rusanov, Calculation of interaction of non-steady shock waves with obstacles, USSR J. Comp. Math. Phys. (1961) 267 -279.
[37] S. Gottlieb, C.-W. Shu, E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM review 43 (1) (2001) 89-112. · Zbl 0967.65098
[38] Z. Sun, H. Teng, F. Xiao, A slope constrained 4th order multi-moment finite volume method with WENO Limiter, Communications in Computational Physics 18 (04) (2015) 901-930. · Zbl 1373.76147
[39] P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computa-tion, Communications on Pure and Applied Mathematics 7 (1954) 159-193. · Zbl 0055.19404
[40] G. A. Sod, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys. 27 (1978) 1-31. · Zbl 0387.76063
[41] C. W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, II, J. Comput. Phys. 83 (1989) 32-78. · Zbl 0674.65061
[42] P. Woodward, The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys. 54 (1984) 115-173. · Zbl 0573.76057
[43] P. D. Lax, X.-D. Liu, Solution of two-dimensional Riemann problems of gas dynamics by positive schemes, SIAM Journal on Scientific Computing 19 (2) (1998) 319-340. · Zbl 0952.76060
[44] A. Kurganov, E. Tadmor, Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers, Numerical Methods for Partial Differential Equations 18 (5) (2002) 584-608. · Zbl 1058.76046
[45] M. Castro, B. Costa, W. S. Don, High order weighted essentially non-oscillatory weno-z schemes for hyperbolic conservation laws, Journal of Computational Physics 230 (5) (2011) 1766-1792. · Zbl 1211.65108
[46] R. Liska, B. Wendroff, Comparison of several difference schemes on 1D and 2D test problems for the Euler equations, SIAM Journal on Scientific Computing 25 (3) (2003) 995-1017. · Zbl 1096.65089
[47] B. Vandenbroucke, S. De Rijcke, The moving mesh code Shadowfax, Astronomy and Com-puting 16 (2016) 109-130.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.