×

Twisted modules and \(G\)-equivariantization in logarithmic conformal field theory. (English) Zbl 1480.18014

From a mathematical standpoint, a two-dimensional chiral conformal field theory is to be viewed as the representation theory of its chiral algebra, a vertex operator algebra. Vertex operator algebras are appropriate in study of logarithmic conformal field theory, in which correlation functions are of logarithmic singularities arising from non-semisimple modules for the chiral algebra, beholden to the logarithmic tensor category theory [Y.-Z. Huang et al., in: Conformal field theories and tensor categories. Proceedings of a workshop held at Beijing International Center for Mathematical Research, Beijing, China, June 13–17, 2011. Heidelberg: Springer. 169–248 (2014; Zbl 1345.81112)].
This paper is concerned with not-necessarily-semisimple or rigid braided tensor categories \(\mathcal{C}\)of modules for the fixed-point vertex operator subalgebra \(V^{G}\) of a vertex operator (super)algebra \(V\) with finite automorphism group \(G\). The principal results in the paper, which are generalizations of the corresponding results of [A. Kirillov jun., Commun. Math. Phys. 229, No. 2, 309–335 (2002; Zbl 1073.17011); “Modular categories and orbifold models. II”, Preprint, arXiv:math/0110221; “On \(G\)-equivariant modular categories”, Preprint, arXiv:math/0401119; M. Müger, J. Algebra 277, No. 1, 256–281 (2004; Zbl 1052.18004); Commun. Math. Phys. 260, No. 3, 727–762 (2005; Zbl 1160.81454)] established by exploiting rigidity and semisimplicity, are as follows.
1.
Every \(V^{G}\)-module in \(\mathcal{C}\)with a unital and associative \(V\)-action is a direct sum of \(g\)-twisted \(V\)-modules for possibly several \(g\in G\);
2.
The category of all such twisted \(V\)-modules is a braided \(G\)-crossed (super)category;
3.
The \(G\)-equivariantization of this braided \(G\)-crossed (super)category is braided tensor equivalent to the original category \(\mathcal{C}\)of \(V^{G}\)-modules.

The author applies these results to the orbifold rationality problem asking whether \(V^{G}\)is strongly rational if \(V\)is strongly rational. It is shown that \(V^{G}\) is indeed strongly rational if \(V\) is strongly rational, \(G\) is any finite automorphism group, and \(V^{G}\) is \(C_{2}\)-cofinite.

MSC:

18M20 Fusion categories, modular tensor categories, modular functors
16B70 Applications of logic in associative algebras
17B69 Vertex operators; vertex operator algebras and related structures
18G40 Spectral sequences, hypercohomology
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics

References:

[1] Abe, T., A \({\mathbb{Z}}_2\)-orbifold model of the symplectic fermionic vertex operator superalgebra, Math. Z., 255, 755-792 (2007) · Zbl 1188.17019 · doi:10.1007/s00209-006-0048-5
[2] Bakalov, B., Twisted logarithmic modules of vertex algebras, Commun. Math. Phys., 345, 355-383 (2016) · Zbl 1367.17021 · doi:10.1007/s00220-015-2503-9
[3] Brundan, J.; Ellis, A., Monoidal supercategories, Commun. Math. Phys., 351, 1045-1089 (2017) · Zbl 1396.17012 · doi:10.1007/s00220-017-2850-9
[4] Carnahan, S., Miyamoto, M.: Regularity of fixed-point vertex operator algebras. arXiv:1603.05645
[5] Creutzig, T.; Kanade, S.; Linshaw, A., Simple current extensions beyond semi-simplicity, Commun. Contemp. Math., 22, 1950001 (2020) · Zbl 1472.17090 · doi:10.1142/S0219199719500019
[6] Creutzig, T., Kanade, S., McRae, R.: Tensor categories for vertex operator superalgebra extensions. arXiv:1705.05017 · Zbl 1540.17001
[7] Dijkgraaf, R.; Vafa, C.; Verlinde, E.; Verlinde, H., The operator algebra of orbifold models, Commun. Math. Phys., 123, 485-526 (1989) · Zbl 0674.46051 · doi:10.1007/BF01238812
[8] Dong, C.; Lepowsky, J., Generalized Vertex Algebras and Relative Vertex Operators, Progress in Mathematics (1993), Boston: Birkhäuser, Boston · Zbl 0803.17009 · doi:10.1007/978-1-4612-0353-7
[9] Dong, C., Li, H., Mason, G.: Compact automorphism groups of vertex operator algebras. Int. Math. Res. Not. IMRN 1996, 913-921 · Zbl 0873.17028
[10] Dong, C., Li, H., Xu, F., Yu, N.: Fusion products of twisted modules in permutation orbifolds. arXiv:1907.00094
[11] Dong, C.; Mason, G., On quantum Galois theory, Duke Math. J., 86, 305-321 (1997) · Zbl 0890.17031 · doi:10.1215/S0012-7094-97-08609-9
[12] Etingof, P.; Gelaki, S.; Nikshych, D.; Ostrik, V., Tensor Categories, Mathematical Surveys and Monographs (2015), Providence: American Mathematical Society, Providence · Zbl 1365.18001 · doi:10.1090/surv/205
[13] Farsad, V., Gainutdinov, A., Runkel, I.: The symplectic fermion ribbon quasi-Hopf algebra and the \(SL(2,{\mathbb{Z}})\)-action on its centre. arXiv:1706.08164 · Zbl 1403.16032
[14] Frenkel, I.; Lepowsky, J.; Meurman, A., Vertex Operator Algebras and the Monster (1988), Boston: Academic Press, Boston · Zbl 0674.17001
[15] Gainutdinov, A.; Runkel, I., Symplectic fermions and a quasi-Hopf algebra structure on \({\overline{U}}_i s\ell (2)\), J. Algebra, 476, 415-458 (2017) · Zbl 1407.16031 · doi:10.1016/j.jalgebra.2016.11.026
[16] Huang, Y.-Z.: Generalized rationality and a “Jacobi identity” for intertwining operator algebras. Selecta Math. (N.S.) 6, 225-267 (2000) · Zbl 1013.17026
[17] Huang, Y-Z, Rigidity and modularity of vertex tensor categories, Commun. Contemp. Math., 10, 871-911 (2008) · Zbl 1169.17019 · doi:10.1142/S0219199708003083
[18] Huang, Y-Z, Cofiniteness conditions, projective covers and the logarithmic tensor product theory, J. Pure Appl. Algebra, 213, 458-475 (2009) · Zbl 1225.17032 · doi:10.1016/j.jpaa.2008.07.016
[19] Huang, Y-Z, Generalized twisted modules associated to general automorphisms of a vertex operator algebra, Commun. Math. Phys., 298, 265-292 (2010) · Zbl 1233.17025 · doi:10.1007/s00220-010-0999-6
[20] Huang, Y-Z, Intertwining operators among twisted modules associated to not-necessarily-commuting automorphisms, J. Algebra, 493, 346-380 (2018) · Zbl 1425.17041 · doi:10.1016/j.jalgebra.2017.09.029
[21] Huang, Y-Z, Twist vertex operators for twisted modules, J. Algebra, 539, 54-83 (2019) · Zbl 1448.17029 · doi:10.1016/j.jalgebra.2019.07.035
[22] Huang, Y-Z; Lepowsky, J., Tensor categories and the mathematics of rational and logarithmic conformal field theory, J. Phys. A, 46, 494009 (2013) · Zbl 1280.81125 · doi:10.1088/1751-8113/46/49/494009
[23] Huang, Y-Z; Kirillov, A.; Lepowsky, J., Braided tensor categories and extensions of vertex operator algebras, Commun. Math. Phys., 337, 1143-1159 (2015) · Zbl 1388.17014 · doi:10.1007/s00220-015-2292-1
[24] Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, I: Introduction and strongly graded algebras and their generalized modules. In: Bai, C., Fuchs, J., Huang, Y.-Z., Kong, L., Runkel, I., Schweigert, C. (eds.) Conformal Field Theories and Tensor Categories, Proceedings of a Workshop Held at Beijing International Center for Mathematics Research, vol. 2, pp. 169-248. Mathematical Lectures from Beijing University. Springer, New York (2014) · Zbl 1345.81112
[25] Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, II: Logarithmic formal calculus and properties of logarithmic intertwining operators. arXiv:1012.4196
[26] Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, III: Intertwining maps and tensor product bifunctors. arXiv:1012.4197 · Zbl 1345.81112
[27] Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, IV: Constructions of tensor product bifunctors and the compatibility conditions. arXiv:1012.4198 · Zbl 1345.81112
[28] Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, V: Convergence condition for intertwining maps and the corresponding compatibility condition. arXiv:1012.4199 · Zbl 1345.81112
[29] Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, VI: Expansion condition, associativity of logarithmic intertwining operators, and the associativity isomorphisms. arXiv:1012.4202
[30] Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, VII: Convergence and extension properties and applications to expansion for intertwining maps. arXiv:1110.1929
[31] Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, VIII: Braided tensor category structure on categories of generalized modules for a conformal vertex algebra. arXiv:1110.1931 · Zbl 1345.81112
[32] Huang, Y-Z; Yang, J., Associative algebras for (logarithmic) twisted modules for a vertex operator algebra, Trans. Am. Math. Soc., 371, 3747-3786 (2019) · Zbl 1450.17008 · doi:10.1090/tran/7490
[33] Jacobson, N., Basic Algebra II (1989), New York: W. H. Freeman and Co., New York · Zbl 0694.16001
[34] Kausch, H.: Curiosities at \(c=-2\). arXiv:hep-th/9510149
[35] Kirillov, A. Jr, Modular categories and orbifold models, Commun. Math. Phys., 229, 183-227 (2002) · Zbl 1073.17011 · doi:10.1007/s002200200650
[36] Kirillov Jr., A.: On modular categories and orbifold models II. arXiv:math/0110221
[37] Kirillov Jr., A.: On \(G\)-equivariant modular categories. arXiv:math/0401119
[38] Kirillov, A. Jr; Ostrik, V., On a \(q\)-analogue of the McKay correspondence and the \(ADE\) classification of \(\mathfrak{sl}_2\) conformal field theories, Adv. Math., 171, 183-227 (2002) · Zbl 1024.17013 · doi:10.1006/aima.2002.2072
[39] Lepowsky, J.; Li, H., Introduction to Vertex Operator Algebras and Their Representations, Progress in Mathematics (2003), Boston: Birkhäuser, Boston
[40] Li, W.: Representations of Vertex Operator Superalgebras and Abelian Intertwining Algebras, Ph.D. thesis, Rutgers University (1997)
[41] McRae, R., On the tensor structure of modules for compact orbifold vertex operator algebras, Math. Z., 296, 1-2, 409-452 (2020) · Zbl 1453.17017 · doi:10.1007/s00209-019-02445-z
[42] Miyamoto, M., \(C_2\)-cofiniteness of cyclic-orbifold models, Commun. Math. Phys., 335, 1279-1286 (2015) · Zbl 1327.17025 · doi:10.1007/s00220-014-2252-1
[43] Miyamoto, M.: \(C_2\)-cofiniteness of orbifold models for finite groups. arXiv:1812.00570 · Zbl 1327.17025
[44] Müger, M., Galois extensions of braided tensor categories and braided crossed \(G\)-categories, J. Algebra, 277, 256-281 (2004) · Zbl 1052.18004 · doi:10.1016/j.jalgebra.2004.02.026
[45] Müger, M., Conformal orbifold theories and braided crossed \(G\)-categories, Commun. Math. Phys., 260, 727-762 (2005) · Zbl 1160.81454 · doi:10.1007/s00220-005-1291-z
[46] Pareigis, B., On braiding and dyslexia, J. Algebra, 171, 413-425 (1995) · Zbl 0816.18003 · doi:10.1006/jabr.1995.1019
[47] Runkel, I., A braided monoidal category for free super-bosons, J. Math. Phys., 55, 041702 (2014) · Zbl 1405.81138 · doi:10.1063/1.4868467
[48] Turaev, V.: Homotopy field theory in dimension 3 and crossed group-categories. arXiv:math/0005291
[49] Xu, X., Intertwining operators for twisted modules of a colored vertex operator superalgebra, J. Algebra, 175, 241-273 (1995) · Zbl 0838.17034 · doi:10.1006/jabr.1995.1185
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.