×

Generalized twisted modules associated to general automorphisms of a vertex operator algebra. (English) Zbl 1233.17025

Twisted modules play an important crucial role in the orbifold theory of vertex operator algebras. In the paper under review, the author introduces a notion of generalized \(g\)-twisted modules, where \(g\) is not necessarily finite. When \({V=\coprod_{n\in \mathbb{Z}}V_{(n)}}\) is a vertex operator algebra such that \({V_{(0)}=\mathbb{C}\mathbf{1}}\) and \(V _{(n)} = 0\) for \(n < 0\) and \(g =\exp{({2\pi \sqrt{-1}\; {\text{Res}}_{x} Y(u, x)})}\), where \(u\) is an element of \(V\) of weight 1 such that \(L(1)u = 0\), a construction of such twisted modules is given using some \(\Delta\)-operator. In particular, examples of such generalized twisted modules associated to the exponentials of some screening operators on certain vertex operator algebras related to the triplet \(W\)-algebras are given.

MSC:

17B69 Vertex operators; vertex operator algebras and related structures

References:

[1] Abe T.: A \({\mathbb{Z}_ 2}\) -orbifold model of the symplectic fermionic vertex operator superalgebra. Math. Z. 255, 755–792 (2007) · Zbl 1188.17019 · doi:10.1007/s00209-006-0048-5
[2] Adamović D., Milas A.: Logarithmic intertwining operators and \({\mathcal{W}(2,2p-1)}\) -algebras. J. Math. Phys. 48, 073503 (2007) · Zbl 1144.81302 · doi:10.1063/1.2747725
[3] Adamović D., Milas A.: On the triplet vertex algebra \({\mathcal{W}(p)}\) . Adv. in Math. 217, 2664–2699 (2008) · Zbl 1177.17017
[4] Adamović, D., Milas, A.: Lattice construction of logarithmic modules for certain vertex operator algebras. To appear in Selecta Math. http://arXiv.org/abs/0902.3417v1[math.QA] , 2009 · Zbl 1235.17019
[5] Bantay P.: Algebraic aspects of orbifold models. Int. J. Mod. Phys. A9, 1443–1456 (1994) · Zbl 0925.81288
[6] Bantay P.: Characters and modular properties of permutation orbifolds. Phys. Lett. B419, 175–178 (1998) · Zbl 0925.81333
[7] Bantay, P.: Permutation orbifolds and their applications. In: Vertex Operator Algebras in Mathematics and Physics, Proc. workshop, Fields Institute for Research in Mathematical Sciences, 2000, ed. by S. Berman, Y. Billig, Y.-Z. Huang, J. Lepowsky, Fields Institute Communications, Vol. 39, Amer. Math. Soc., 2003, pp. 13–23 · Zbl 1080.81068
[8] Barron K., Dong C., Mason G.: Twisted sectors for tensor products vertex operator algebras associated to permutation groups. Commun. Math. Phys. 227, 349–384 (2002) · Zbl 1073.17008 · doi:10.1007/s002200200633
[9] Barron K., Huang Y.-Z., Lepowsky J.: An equivalence of two constructions of permutation-twisted modules for lattice vertex operator algebras. J. Pure Appl. Alg. 210, 797–826 (2007) · Zbl 1207.17033 · doi:10.1016/j.jpaa.2006.12.005
[10] Borcherds R.: Vertex algebras, Kac-Moody algebras. and the Monster. Proc. Natl. Acad. Sci. USA 83, 3068–3071 (1986) · Zbl 0613.17012 · doi:10.1073/pnas.83.10.3068
[11] Borisov L., Halpern M., Schweigert C.: Systematic approach to cyclic orbifolds. Int. J. Mod. Phy. A13(1), 125–168 (1998) · Zbl 1002.17014
[12] Carqueville N., Flohr M.: Nonmeromorphic operator product expansion and C 2-cofiniteness for a family of \({\mathcal{W}}\) -algebras. J. Phys. A39, 951–966 (2006) · Zbl 1081.17015
[13] de Boer J., Halpern M., Obers N.: The operator algebra and twisted KZ equations of WZW orbifolds. J. High Energy Phys. 10, 011 (2001)
[14] Dijkgraaf R., Vafa C., Verlinde E., Verlinde H.: The operator algebra of orbifold models. Commun. Math. Phys. 123, 485–526 (1989) · Zbl 0674.46051 · doi:10.1007/BF01238812
[15] Dixon L., Friedan D., Martinec E., Shenker S.: The conformal field theory of orbifolds. Nucl. Phys. B282, 13–73 (1987) · doi:10.1016/0550-3213(87)90676-6
[16] Dixon L., Ginsparg P., Harvey J.: Beauty and the beast: Superconformal conformal symmetry in a Monster module. Commun. Math. Phys. 119, 221–241 (1989) · Zbl 0657.17011 · doi:10.1007/BF01217740
[17] Dixon L., Harvey J., Vafa C., Witten E.: Strings on orbifolds. Nucl. Phys. B261, 678–686 (1985) · doi:10.1016/0550-3213(85)90593-0
[18] Dixon L., Harvey J., Vafa C., Witten E.: Strings on orbifolds, II. Nucl. Phys. B274, 285–314 (1986) · doi:10.1016/0550-3213(86)90287-7
[19] Dolan L., Goddard P., Montague P.: Conformal field theory of twisted vertex operators. Nucl. Phys. B338, 529–601 (1990) · Zbl 0745.17011 · doi:10.1016/0550-3213(90)90644-S
[20] Dong C.: Twisted modules for vertex algebras associated with even lattice. J. Alg. 165, 91–112 (1994) · Zbl 0807.17023 · doi:10.1006/jabr.1994.1099
[21] Dong C., Lepowsky J.: The algebraic structure of relative twisted vertex operators. J. Pure Appl. Alg. 110, 259–295 (1996) · Zbl 0862.17021 · doi:10.1016/0022-4049(95)00095-X
[22] Dong C., Li H., Mason G.: Twisted representations of vertex operator algebras. Math. Ann. 310, 571–600 (1998) · Zbl 0890.17029 · doi:10.1007/s002080050161
[23] Dong C., Li H., Mason G.: Modular invariance of trace functions in orbifold theory and generalized moonshine. Commun. Math. Phys. 214, 1–56 (2000) · Zbl 1061.17025 · doi:10.1007/s002200000242
[24] Doyon B., Lepowsky J., Milas A.: Twisted modules for vertex operator algebras and Bernoulli polynomials. Int. Math. Res. Not. 44, 2391–2408 (2003) · Zbl 1051.17016 · doi:10.1155/S1073792803130863
[25] Doyon B., Lepowsky J., Milas A.: Twisted vertex operators and Bernoulli polynomials. Commun. Contemp. Math. 8, 247–307 (2006) · Zbl 1119.17011 · doi:10.1142/S0219199706002118
[26] Feigin B.L., Gaĭnutdinov A.M., Semikhatov A.M., Tipunin I.Yu.: The Kazhdan-Lusztig correspondence for the representation category of the triplet W-algebra in logarithmic conformal field theories (Russian). Teoret. Mat. Fiz. 148(3), 398–427 (2006) · Zbl 1177.17012
[27] Feigin B.L., Gaĭnutdinov A.M., Semikhatov A.M., Tipunin I.Yu.: Logarithmic extensions of minimal models: characters and modular transformations. Nucl. Phys. B757, 303–343 (2006) · Zbl 1116.81059 · doi:10.1016/j.nuclphysb.2006.09.019
[28] Feigin B.L., Gaĭnutdinov A.M., Semikhatov A.M., Tipunin I.Yu.: Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center. Commun. Math. Phys. 265, 47–93 (2006) · Zbl 1107.81044 · doi:10.1007/s00220-006-1551-6
[29] Flohr M.: On modular invariant partition functions of conformal field theories with logarithmic operators. Int. J. Mod. Phys. A11, 4147–4172 (1996) · Zbl 1044.81713
[30] Flohr M.: On fusion rules in logarithmic conformal field theories. Int. J. Mod. Phys. A12, 1943–1958 (1996) · Zbl 0985.81738
[31] Flohr M., Gaberdiel M.R.: Logarithmic torus amplitudes. J. Phys. A39, 1955–1968 (2006) · Zbl 1085.81053
[32] Flohr, M., Knuth, H.: On Verlinde-Like formulas in c p, 1 logarithmic conformal field theories. To appear, http://arXiv.org/abs/0705.0545v1[math.ph] , 2007
[33] Flohr M., Grabow C., Koehn M.: Fermionic Expressions for the characters of c(p, 1) logarithmic conformal field theories. Nucl. Phys. B768, 263–276 (2007) · Zbl 1117.81122 · doi:10.1016/j.nuclphysb.2007.01.025
[34] Frenkel, I., Huang, Y.-Z., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Memoirs American Math. Soc. 104, 1993 · Zbl 0789.17022
[35] Frenkel I., Lepowsky J., Meurman A.: A natural representation of the Fischer-Griess Monster with the modular function J as character. Proc. Natl. Acad. Sci. USA 81, 3256–3260 (1984) · Zbl 0543.20016 · doi:10.1073/pnas.81.10.3256
[36] Frenkel, I., Lepowsky, J., Meurman, A.: Vertex operator calculus. In: Mathematical Aspects of String Theory, Proc. 1986 Conference, San Diego, ed. by S.-T. Yau, Singapore: World Scientific, 1987, pp. 150–188 · Zbl 0657.17010
[37] Frenkel, I., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster. Pure and Applied Math. Vol. 134, London-New York: Academic Press, 1988 · Zbl 0674.17001
[38] Fuchs, J.: On nonsemisimple fusion rules and tensor categories. In: Lie Algebras, Vertex Operator Algebras and their Applications, Proceedings of a conference in honor of James Lepowsky and Robert Wilson, 2005, ed. Y.-Z. Huang, K. Misra, Contemporary Mathematics, Vol. 442, Providence, RI: Amer. Math. Soc., 2007
[39] Fuchs J., Hwang S., Semikhatov A.M., Tipunin I.Yu.: Nonsemisimple Fusion Algebras and the Verlinde Formula. Commun. Math. Phys. 247(3), 713–742 (2004) · Zbl 1063.81062 · doi:10.1007/s00220-004-1058-y
[40] Fuchs J., Klemm A., Schmidt M.: Orbifolds by cyclic permutations in Gepner type superstrings and in the corresponding Calabi-Yau manifolds. Ann. Phys. 214, 221–257 (1992) · Zbl 0758.53049 · doi:10.1016/S0003-4916(05)80001-6
[41] Gaberdiel M.R., Kausch H.G.: Indecomposable fusion products. Nucl. Phys. B477, 298–318 (1996)
[42] Gaberdiel M.R., Kausch H.G.: A rational logarithmic conformal field theory. Phys. Lett. B386, 131–137 (1996)
[43] Gaberdiel M.R., Runkel I.: The logarithmic triplet theory with boundary. J. Phys. A39, 14745–14780 (2006) · Zbl 1107.81045
[44] Gaberdiel M.R., Runkel I.: From boundary to bulk in logarithmic CFT. J. Phys. A41, 075402 (2008) · Zbl 1134.81044
[45] Gaĭnutdinov A.M., Tipunin I.Yu.: Radford, Drinfeld, and Cardy boundary states in (1,p) logarithmic conformal field models. J. Phys. A42, 315207 (2009) · Zbl 1177.81068
[46] Ganor, O., Halpern, M., Helfgott, C., Obers, N.: The outer-automorphic WZW orbifolds on \({\mathfrak{so}(2n)}\) , including five triality orbifolds on \({\mathfrak{so}(8)}\) . J. High Energy Phys. 12, 019 (2002)
[47] Halpern M., Helfgott C.: The general twisted open WZW string. Int. J. Mod. Phys. A20, 923–992 (2005) · Zbl 1074.81060
[48] Halpern M., Obers N.: Two large examples in orbifold theory: abelian orbifolds and the charge conjugation orbifold on \({\mathfrak{su}(n)}\) . Int. J. Mod. Phys. A17, 3897–3961 (2002) · Zbl 1028.81046
[49] Hamidi S., Vafa C.: Interactions on orbifolds. Nucl. Phys. B279, 465–513 (1987) · doi:10.1016/0550-3213(87)90006-X
[50] Harvey, J.: Twisting the heterotic string. In: Unified String Theories, Proc. 1985 Inst. for Theoretical Physics Workshop, Ed. by M. Green, D. Gross, Singapore: World Scientific, 1086, pp. 704–718
[51] Huang Y.-Z., Lepowsky J., Zhang L.: A logarithmic generalization of tensor product theory for modules for a vertex operator algebra. Int. J. Math. 17, 975–1012 (2006) · Zbl 1197.17017 · doi:10.1142/S0129167X06003758
[52] Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor product theory for generalized modules for a conformal vertex algebra. To appear, http://arXiv.org/abs/0710.2687v3[math.QA] , 2007
[53] Kausch H.G.: Extended conformal algebras generated by multiplet of primary fields. Phys. Lett. 259B, 448–455 (1991)
[54] Kausch H.G.: Symplectic fermions. Nucl. Phys. B583, 513–541 (2000) · Zbl 0984.81141 · doi:10.1016/S0550-3213(00)00295-9
[55] Klemm A., Schmidt M.G.: Orbifolds by cyclic permutations of tensor product conformal field theories. Phys. Lett. B245, 53–58 (1990)
[56] Lepowsky J.: Calculus of twisted vertex operators. Proc. Nat. Acad. Sci. USA 82, 8295–8299 (1985) · Zbl 0579.17010 · doi:10.1073/pnas.82.24.8295
[57] Lepowsky, J.: Perspectives on vertex operators and the Monster. In: Proc. 1987 Symposium on the Mathematical Heritage of Hermann Weyl, Duke Univ., Proc. Symp. Pure. Math., Amer. Math. Soc. 48, 181–197 (1988) · Zbl 0662.17007
[58] Li, H.: Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules. In: Moonshine, the Monster, and related topics Mount Holyoke, 1994, ed. C. Dong, G. Mason, Contemporary Math., Vol. 193, Providence, RI: Amer. Math. Soc., 1996, pp. 203–236
[59] Moore G.: Atkin-Lehner symmetry. Nucl. Phys. B293, 139–188 (1987) · doi:10.1016/0550-3213(87)90067-8
[60] Nagatomo, K., Tsuchiya, A.: The Triplet Vertex operator algebra W(p) and the restricted quantum group at root of unity, to appear, http://arXiv.org/abs/0902.4607v2[math.QA] , 2009
[61] Narain K.S., Sarmadi M.H., Vafa C.: Asymmetric orbifolds. Nucl. Phys. B288, 551–577 (1987) · doi:10.1016/0550-3213(87)90228-8
[62] Pearce P.A., Rasmussen J., Ruelle P.: Integrable boundary conditions and \({\mathcal{W}}\) -extended fusion in the logarithmic minimal models \({\mathcal{L} \mathcal{M}(1, p)}\) . J. Phys. A41, 295201 (2008) · Zbl 1149.81019
[63] Pearce, P.A., Rasmussen, J., Ruelle, P.: Grothendieck ring and Verlinde formula for the \({\mathcal{W}}\) -extended logarithmic minimal model \({\mathcal{WLM}(1,p)}\) . To appear, http://arXiv.org/abs/0907.0134v1[hep-th] , 2009
[64] Rasmussen, J.:Fusion matrices, generalized Verlinde formulas, and partition functions in \({\mathcal{WLM}(1,p)}\) . To appear, http://arXiv.org/abs/0908.2014v2[hep-th] , 2009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.