×

A braided monoidal category for free super-bosons. (English) Zbl 1405.81138

Summary: The chiral conformal field theory of free super-bosons is generated by weight one currents whose mode algebra is the affinisation of an abelian Lie super-algebra \(\mathfrak{h}\) with non-degenerate super-symmetric pairing. The mode algebras of a single free boson and of a single pair of symplectic fermions arise for even|odd dimension \(1|0\) and \(0|2\) of \(\mathfrak{h}\), respectively. In this paper, the representations of the untwisted mode algebra of free super-bosons are equipped with a tensor product, a braiding, and an associator. In the symplectic fermion case, i.e., if \(\mathfrak {h}\) is purely odd, the braided monoidal structure is extended to representations of the \(\mathbb {Z}/2\mathbb {Z}\)-twisted mode algebra. The tensor product is obtained by computing spaces of vertex operators. The braiding and associator are determined by explicit calculations from three- and four-point conformal blocks.{
©2014 American Institute of Physics}

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T60 Supersymmetric field theories in quantum mechanics
17A70 Superalgebras
81R25 Spinor and twistor methods applied to problems in quantum theory
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)
18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)

References:

[1] \documentclass[12pt]{minimal}\( \begin{document}U(\mathfrak{h})\end{document}\) is the exterior algebra of \documentclass[12pt]{minimal}\( \begin{document}\mathfrak{h}\end{document} \), provided \documentclass[12pt]{minimal}\( \begin{document}\mathfrak{h}\end{document}\) is understood as a vector space rather than a super-vector space. In \documentclass[12pt]{minimal}\( \begin{document}{\mathcal{S}\mathcal{V}\hspace{-0.5pt}ect}\end{document} \), \documentclass[12pt]{minimal}\( \begin{document}U(\mathfrak{h})\end{document}\) is the symmetric algebra of \documentclass[12pt]{minimal}\( \begin{document}\mathfrak{h}\end{document} \) (since \documentclass[12pt]{minimal}\( \begin{document}\mathfrak{h}\end{document}\) is purely odd).
[2] There is a potential pitfall with the above definition of \documentclass[12pt]{minimal}\( \begin{document}\overline{\operatorname{Ind}}(R)\end{document}\) which originates from using the H-grading instead of the (in general non-existent) \(L_0\)-grading. Namely, consider the case \documentclass[12pt]{minimal}\( \begin{document}\mathfrak{h}= \mathbb{C}^{1|0}\end{document}\) and \documentclass[12pt]{minimal}\( \begin{document}R = \bigoplus_{m \in \mathbb{Z}} \mathbb{C}_m\end{document} \), where \documentclass[12pt]{minimal}\( \begin{document}\mathbb{C}_m\end{document}\) is the one-dimensional \documentclass[12pt]{minimal}\( \begin{document}\mathfrak{h}\end{document} \)-module on which the generator of \documentclass[12pt]{minimal}\( \begin{document}\mathfrak{h}\end{document}\) acts by multiplication by m. Then the vector \documentclass[12pt]{minimal}\( \begin{document}1_m \in \mathbb{C}_m\end{document}\) has \(L_0\)-eigenvalue \documentclass[12pt]{minimal}\( \begin{document}\frac{1}{2} m^2\end{document}\) and H-eigenvalue 0. The infinite sum \documentclass[12pt]{minimal}\( \begin{document}\sum_{m \in \mathbb{Z}} 1_m\end{document}\) is therefore an element of the algebraic completion of \documentclass[12pt]{minimal}\( \begin{document}\operatorname{Ind}(R)\end{document}\) with respect to the \(L_0\)-gradation, but it is not in the completion with respect to the H-gradation, i.e., \documentclass[12pt]{minimal}\( \begin{document}\sum_{m \in \mathbb{Z}} 1_m \notin \overline{\operatorname{Ind}}(R)\end{document} \). Since the \(L_0\)-gradation is often used in conformal field theory, this point should be kept in mind.
[3] In the context of free boson vertex operators (assume that \documentclass[12pt]{minimal}\( \begin{document}\mathfrak{h}\end{document}\) is 1|0-dimensional for simplicity), the map Q is usually written as exp ((const)\(π_0)\), where \(π_0\) is an additional operator which is conjugate to \(a_0\) in the sense that \([a_m, π_0] = δ_{m, 0} \). Here we avoid the problem of specifying what space \(π_0\) acts on and give Q directly.
[4] 4.T.Abe and Y.Arike, “Intertwining operators and fusion rules for vertex operator algebras arising from symplectic fermions,” J. Alg.373, 39-64 (2013);10.1016/j.jalgebra.2012.09.022e-print arXiv:1108.1823 [math.QA]. · Zbl 1317.17031
[5] 5.T.Abe, “A \documentclass[12pt]{minimal}\( \begin{document}\mathbb{Z}_2\end{document} \)<mml:math overflow=”scroll“><mml:mi mathvariant=”double-struck“>Z2-orbifold model of the symplectic fermionic vertex operator superalgebra,” Math. Z.255, 755-792 (2007);10.1007/s00209-006-0048-5e-print arXiv:math.QA/0503472. · Zbl 1188.17019
[6] 6.Y.Arike and K.Nagatomo, “Some remarks on pseudo-trace functions for orbifold models associated with symplectic fermions,” Int. J. Math.24, 1350008 (2013);10.1142/S0129167X13500080e-print arXiv:1104.0068 [math.QA]. · Zbl 1271.81152
[7] Adamović, D.; Milas, A., An analogue of modular BPZ-equation in logarithmic (super)conformal field theory, Contemp. Math., 497, 1-17 (2009) · Zbl 1225.17029 · doi:10.1090/conm/497
[8] Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series 55 (1972). · Zbl 0543.33001
[9] 9.A.Bredthauer and M.Flohr, “Boundary states in c = −2 logarithmic conformal field theory,” Nucl. Phys. B639, 450-470 (2002);10.1016/S0550-3213(02)00466-2e-print arXiv:hep-th/0204154. · Zbl 0997.81115
[10] 10.T.Creutzig and D.Ridout, “Relating the archetypes of logarithmic conformal field theory,” Nucl. Phys. B872, 348-391 (2013);10.1016/j.nuclphysb.2013.04.007e-print arXiv:1107.2135 [hep-th]. · Zbl 1282.81157
[11] 11.T.Creutzig and P. B.Ronne, “The GL(1|1)-symplectic fermion correspondence,” Nucl. Phys. B815, 95-124 (2009);10.1016/j.nuclphysb.2009.02.013e-print arXiv:0812.2835 [hep-th]. · Zbl 1194.81194
[12] Davydov, A.; Futorny, V., Commutative algebras in Drinfeld categories of abelian Lie algebras · Zbl 1302.17011
[13] Dixon, L. J.; Friedan, D.; Martinec, E. J.; Shenker, S. H., The conformal field theory of orbifolds, Nucl. Phys. B, 282, 13-73 (1987) · doi:10.1016/0550-3213(87)90676-6
[14] Dolan, L.; Goddard, P.; Montague, P., Conformal field theory of twisted vertex operators, Nucl. Phys. B, 338, 529-601 (1990) · Zbl 0745.17011 · doi:10.1016/0550-3213(90)90644-S
[15] 15.V. G.Drinfeld, “On quasitriangular quasi-Hopf algebras and on a group that is closely connected with \documentclass[12pt]{minimal}\( \begin{document}\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\end{document} \)<mml:math overflow=”scroll“> Gal (<mml:mi mathvariant=”double-struck“>Q¯/<mml:mi mathvariant=”double-struck“>Q),” Algebra i Analiz2, 149-181 (1990) V. G.Drinfeld [Leningrad Math. J.2, 829-860 (1991)].
[16] 16.A.Davydov and I.Runkel, “\documentclass[12pt]{minimal}\( \begin{document}\mathbb{Z}/2\mathbb{Z}\end{document} \)<mml:math overflow=”scroll“><mml:mi mathvariant=”double-struck“>Z/2<mml:mi mathvariant=”double-struck“>Z-extensions of Hopf algebra module categories by their base categories,” Adv. Math.247, 192-265 (2013);10.1016/j.aim.2013.06.024e-print arXiv:1207.3611 [math.QA]. · Zbl 1328.18009
[17] Davydov, A. and Runkel, I., “Commutative algebras in symplectic fermion categories” (unpublished). · Zbl 1297.81147
[18] 18.M.Flohr and M. R.Gaberdiel, “Logarithmic torus amplitudes,” J. Phys. A39, 1955-1968 (2006);10.1088/0305-4470/39/8/012e-print arXiv:hep-th/0509075. · Zbl 1085.81053
[19] 19.J.Fuchs, S.Hwang, A. M.Semikhatov, and I. Y.Tipunin, “Nonsemisimple fusion algebras and the Verlinde formula,” Commun. Math. Phys.247, 713-742 (2004);10.1007/s00220-004-1058-ye-print arXiv:hep-th/0306274. · Zbl 1063.81062
[20] 20.B. L.Feigin, A. M.Gainutdinov, A. M.Semikhatov, and I. Y.Tipunin, “Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center,” Commun. Math. Phys.265, 47-93 (2006);10.1007/s00220-006-1551-6e-print arXiv:hep-th/0504093. · Zbl 1107.81044
[21] 21.B. L.Feigin, A. M.Gainutdinov, A. M.Semikhatov, and I. Y.Tipunin, “Kazhdan-Lusztig correspondence for the representation category of the triplet W-algebra in logarithmic conformal field theory,” Theor. Math. Phys.148, 1210-1235 (2006);10.1007/s11232-006-0113-6e-print arXiv:math.qa/0512621. · Zbl 1177.17012
[22] Frenkel, I.; Lepowsky, J.; Meurman, A., Vertex Operator Algebras and the Monster (1987) · Zbl 0657.17010
[23] 23.M. R.Gaberdiel, “Fusion of twisted representations,” Int. J. Mod. Phys. A12, 5183-5208 (1997);10.1142/S0217751X97002784e-print arXiv:hep-th/9607036. · Zbl 0899.17013
[24] 24.M. R.Gaberdiel and H. G.Kausch, “A rational logarithmic conformal field theory,” Phys. Lett. B386, 131-137 (1996);10.1016/0370-2693(96)00949-5e-print arXiv:hep-th/9606050. · Zbl 0948.81632
[25] 25.M. R.Gaberdiel and H. G.Kausch, “A local logarithmic conformal field theory,” Nucl. Phys. B538, 631-658 (1999);10.1016/S0550-3213(98)00701-9e-print arXiv:hep-th/9807091. · Zbl 0948.81632
[26] 26.M. R.Gaberdiel and I.Runkel, “The logarithmic triplet theory with boundary,” J. Phys. A39, 14745 (2006);10.1088/0305-4470/39/47/016e-print arXiv:hep-th/0608184. · Zbl 1107.81045
[27] 27.A. M.Gainutdinov, N.Read, and H.Saleur, “Continuum limit and symmetries of the periodic gl(1|1) spin chain,” Nucl. Phys. B871, 245-288 (2013);10.1016/j.nuclphysb.2013.01.018e-print arXiv:1112.3403 [hep-th]. · Zbl 1262.81158
[28] 28.M. R.Gaberdiel, I.Runkel, and S.Wood, “Fusion rules and boundary conditions in the c = 0 triplet model,” J. Phys. A42, 325403 (2009);10.1088/1751-8113/42/32/325403e-print arXiv:0905.0916 [hep-th]. · Zbl 1179.81145
[29] 29.A. M.Gainutdinov and I. Y.Tipunin, “Radford, Drinfeld, and Cardy boundary states in (1,p) logarithmic conformal field models,” J. Phys. A42, 315207 (2009);10.1088/1751-8113/42/31/315207e-print arXiv:0711.3430 [hep-th]. · Zbl 1177.81068
[30] Huang, Y.-Z.; Lepowsky, J.; Zhang, L., Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, I-VIII
[31] Kac, V., Lie super-algebras, Adv. Math., 26, 8-96 (1977) · Zbl 0366.17012 · doi:10.1016/0001-8708(77)90017-2
[32] Kac, V., Vertex Algebras for Beginners (1998) · Zbl 0924.17023
[33] Kausch, H. G., Curiosities at c = −2
[34] 34.H. G.Kausch, “Symplectic Fermions,” Nucl. Phys. B583, 513-541 (2000);10.1016/S0550-3213(00)00295-9e-print arXiv:hep-th/0003029. · Zbl 0984.81141
[35] 35.S.Kawai and J. F.Wheater, “Modular transformation and boundary states in logarithmic conformal field theory,” Phys. Lett. B508, 203-210 (2001);10.1016/S0370-2693(01)00503-2e-print arXiv:hep-th/0103197. · Zbl 0977.81133
[36] Knizhnik, V. G.; Zamolodchikov, A. B., Current Algebra and Wess-Zumino Model in Two-Dimensions, Nucl. Phys. B, 247, 83-103 (1984) · Zbl 0661.17020 · doi:10.1016/0550-3213(84)90374-2
[37] 37.H.Li, “Some finiteness properties of regular vertex operator algebras,” J. Alg.212, 495-514 (1999);10.1006/jabr.1998.7654e-print arXiv:math.QA/9807077. · Zbl 0953.17017
[38] 38.A.LeClair, “The gl(1|1) super-current algebra: The role of twist and logarithmic fields,” Adv. Theor. Math. Phys.13, 259 (2009);10.4310/ATMP.2009.v13.n1.a8e-print arXiv:0710.2906 [hep-th]. · Zbl 1172.81016
[39] 39.A.Milas, “Weak modules and logarithmic intertwining operators for vertex operator algebras,” Contemp. Math.297, 201-227 (2002);10.1090/conm/297e-print arXiv:math.QA/0101167. · Zbl 1023.17020
[40] 40.A.Milas, “Logarithmic intertwining operators and vertex operators,” Commun. Math. Phys.277, 497-529 (2008);10.1007/s00220-007-0375-3e-print arXiv:math.QA/0609306. · Zbl 1175.17010
[41] 41.M.Miyamoto, “Modular invariance of vertex operator algebras satisfying C_2-cofiniteness,” Duke Math. J.122, 51-91 (2004);10.1215/S0012-7094-04-12212-2e-print arXiv:math.QA/0209101. · Zbl 1165.17311
[42] Moore, G. W.; Seiberg, N.; Green, M., Lectures on RCFT “Strings ”89, Proceedings of the Trieste Spring School on Superstrings (1990)
[43] 43.W.Nahm, “Quasirational fusion products,” Int. J. Mod. Phys. B8, 3693-3702 (1994);10.1142/S0217979294001597e-print arXiv:hep-th/9402039. · Zbl 1264.81247
[44] Nagatomo, K.; Tsuchiya, A., The triplet vertex operator algebra W(p) and the restricted quantum group at root of unity
[45] 45.I.Runkel, M. R.Gaberdiel, and S.Wood, “Logarithmic bulk and boundary conformal field theory and the full centre construction,” Conformal Field Theories and Tensor Categories, Mathematical Lectures from Peking University 2014 (Springer, 2014), pp. 93-168; e-print arXiv:1201.6273 [hep-th]. · Zbl 1312.81123
[46] 46.N.Read and H.Saleur, “Associative-algebraic approach to logarithmic conformal field theories,” Nucl. Phys. B777, 316-351 (2007);10.1016/j.nuclphysb.2007.03.033e-print arXiv:hep-th/0701117. · Zbl 1200.81136
[47] 47.P.Ruelle, “A c = −2 boundary changing operator for the Abelian sandpile model,” Phys. Lett. B539, 172-177 (2002);10.1016/S0370-2693(02)02069-5e-print arXiv:hep-th/0203105. · Zbl 0996.81091
[48] Scheunert, M., The Theory of Lie Super-Algebras (1979) · Zbl 0407.17001
[49] Turaev, V., Homotopy field theory in dimension 3 and crossed group categories
[50] 50.A.Tsuchiya and S.Wood, “The tensor structure on the representation category of the W_p triplet algebra,” J. Phys. A46, 445203 (2013);10.1088/1751-8113/46/44/445203e-print arXiv:1201.0419 [hep-th]. · Zbl 1290.81143
[51] Xu, X. P., Intertwining operators for twisted modules of a colored vertex operator super-algebra, J. Alg., 175, 241-273 (1995) · Zbl 0838.17034 · doi:10.1006/jabr.1995.1185
[52] Zamolodchikov, A. B., Conformal scalar field on the hyperelliptic curve and critical Ashkin-Teller multipoint correlation functions, Nucl. Phys. B, 285, 481-503 (1987) · doi:10.1016/0550-3213(87)90350-6
[53] Zhu, Y.-C., Modular invariance of vertex operator algebras, J. Am. Math. Soc., 9, 237-302 (1996) · Zbl 0854.17034 · doi:10.1090/S0894-0347-96-00182-8
[54] Zaitsev, A. A.; Nikolenko, L. V., Undecomposable representations of a Grassman algebra, Funkts. Anal. Prilozh., 4, 101-102 (1970) · Zbl 0243.15028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.