×

A survey on the modeling of hybrid behaviors: how to account for impulsive jumps properly. (English) Zbl 1478.93285

Summary: We propose an overview of the modeling approaches for the mathematical description and analysis of processes that combine continuous and discontinuous behavior, namely impulsive differential equations, hybrid dynamical systems, and differential equations involving Dirac delta functions. These classes of systems are chosen due to their dominant prevalence in physics, mathematics, and control engineering research communities. A comparison of these frameworks is provided and their applicability depending on the character of the hybrid behavior is discussed. In particular, we show that special care should be taken when equations with Dirac delta function are interpreted as impulsive differential equations. We also provide insights on the stability and attractivity analysis of hybrid behaviors, highlight their essential differences to the respective stability concepts for smooth dynamical systems, and discuss specific phenomena which are peculiar for hybrid behaviors, like beating or Zeno phenomenon, modeling of multiple impulses at a single time instance, death and splitting of solutions, etc. With this, the paper attempts at bringing attention of the interested researchers to the methods available in other research communities and fostering the exchange of ideas and analysis techniques.

MSC:

93C27 Impulsive control/observation systems
93C15 Control/observation systems governed by ordinary differential equations
34A37 Ordinary differential equations with impulses
93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory

Software:

HyEQ
Full Text: DOI

References:

[1] Derler, P.; Lee, E. A.; Vincentelli, A. S., Modeling cyber-physical systems, Proc IEEE, 100, 1, 13-28 (2011)
[2] Van Der Schaft, A. J.; Schumacher, J. M., An introduction to hybrid dynamical systems, 251 (2000), Springer London · Zbl 0940.93004
[3] Bemporad, A.; Heemels, M.; Johansson, M.; Others, Networked control systems, 406 (2010), Springer · Zbl 1201.93003
[4] Hespanha, J. P.; Naghshtabrizi, P.; Xu, Y., A survey of recent results in networked control systems, Proc IEEE, 95, 1, 138-162 (2007)
[5] Zhang, W.; Branicky, M. S.; Phillips, S. M., Stability of networked control systems, IEEE Control Syst Mag, 21, 1, 84-99 (2001)
[6] Walsh, G. C.; Ye, H., Scheduling of networked control systems, IEEE Control Syst Mag, 21, 1, 57-65 (2001)
[7] Hu, J.-W.; Zhan, X.-S.; Wu, J.; Yan, H.-C., Analysis of optimal performance of MIMO networked control systems with encoding and packet dropout constraints, IET Control Theory & Applications, 14, 13, 1762-1768 (2020) · Zbl 1542.93198
[8] Heemels, W.; Johansson, K. H.; Tabuada, P., An introduction to event-triggered and self-triggered control, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 3270-3285 (2012), IEEE
[9] Dimarogonas, D. V.; Frazzoli, E.; Johansson, K. H., Distributed event-triggered control for multi-agent systems, IEEE Trans Automat Contr, 57, 5, 1291-1297 (2011) · Zbl 1369.93019
[10] Girard, A., Dynamic triggering mechanisms for event-triggered control, IEEE Trans Automat Contr, 60, 7, 1992-1997 (2014) · Zbl 1360.93423
[11] Li, T.; Tang, X.; Ge, J.; Fei, S., Event-based fault-tolerant control for networked control systems applied to aircraft engine system, Inf Sci (Ny), 512, 1063-1077 (2020) · Zbl 1461.93313
[12] Li, X.; Bohner, M.; Wang, C.-K., Impulsive differential equations: periodic solutions and applications, Automatica, 52, 173-178 (2015) · Zbl 1309.93074
[13] Castilla, M.; Bordons, C.; Visioli, A., Event-based state-space model predictive control of a renewable hydrogen-based microgrid for office power demand profiles, J Power Sources, 450, 227670 (2020)
[14] Rodríguez-Miranda, E.; Guzmán, J. L.; Berenguel, M.; Acién, F. G.; Visioli, A., Diurnal and nocturnal ph control in microalgae raceway reactors by combining classical and event-based control approaches, Water Sci Technol (2020)
[15] Yang, T., Impulsive control theory, 272 (2001), Springer Science & Business Media · Zbl 0996.93003
[16] Yang, T.; Chua, L. O., Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 44, 10, 976-988 (1997)
[17] Yang, T.; Chua, L. O., Impulsive control and synchronization of nonlinear dynamical systems and application to secure communication, Int J Bifurcation Chaos, 7, 03, 645-664 (1997) · Zbl 0925.93374
[18] Chen, S.; Yang, Q.; Wang, C., Impulsive control and synchronization of unified chaotic system, Chaos, solitons & fractals, 20, 4, 751-758 (2004) · Zbl 1050.93051
[19] Yang, T.; Yang, L.-B.; Yang, C.-M., Impulsive control of lorenz system, Physica D, 110, 1-2, 18-24 (1997) · Zbl 0925.93414
[20] Liu, B.; Sun, Z.; Luo, Y.; Zhong, Y., Uniform synchronization for chaotic dynamical systems via event-triggered impulsive control, Physica A, 531, 121725 (2019) · Zbl 07569427
[21] Hernandez-Mejia, G.; Alanis, A. Y.; Hernandez-Gonzalez, M.; Findeisen, R.; Hernandez-Vargas, E. A., Passivity-based inverse optimal impulsive control for influenza treatment in the host, IEEE Trans Control Syst Technol, 28, 1, 94-105 (2019)
[22] Heydari, A., Optimal impulsive control using adaptive dynamic programming and its application in spacecraft rendezvous, IEEE Trans Neural Netw Learn Syst (2020)
[23] Ferrante, F.; Gouaisbaut, F.; Sanfelice, R. G.; Tarbouriech, S., L2-State Estimation with guaranteed convergence speed in the presence of sporadic measurements, IEEE Trans Automat Contr, 64, 8, 3362-3369 (2018) · Zbl 1482.93251
[24] Schaum, A.; Feketa, P.; Meurer, T.; Moreno, J. A., Robust nonlinear observer design based on impulsive dissipativity, arXiv preprint arXiv:200603932 (2020)
[25] Kader, Z.; Zheng, G.; Barbot, J.-P., Impulsive observer design for linear systems with delayed outputs, IFAC-PapersOnLine, 50, 1, 1263-1268 (2017)
[26] Feketa, P.; Schaum, A.; Jerono, P.; Meurer, T., Impulsive observer design for a class of continuous biological reactors, 2019 IEEE 58th Conference on Decision and Control (CDC), 5076-5081 (2019), IEEE
[27] Bouraoui, I.; Farza, M.; Ménard, T.; Abdennour, R. B.; M’Saad, M.; Mosrati, H., Observer design for a class of uncertain nonlinear systems with sampled outputs-Application to the estimation of kinetic rates in bioreactors, Automatica, 55, 78-87 (2015) · Zbl 1378.93023
[28] Feketa, P.; Bogomolov, S.; Meurer, T., Safety verification for impulsive systems, IFAC-PapersOnLine, 53, 2, 1949-1954 (2020)
[29] Samoilenko, A. M.; Perestyuk, N. A., Impulsive differential equations, 14 (1995), World Scientific · Zbl 0837.34003
[30] Goebel, R.; Sanfelice, R. G.; Teel, A. R., Hybrid dynamical systems: modeling, stability, and robustness (2012), Princeton University Press · Zbl 1241.93002
[31] Dayan, P.; Abbott, L. F., Theoretical neuroscience: computational and mathematical modeling of neural systems (2001), Computational Neuroscience Series · Zbl 1051.92010
[32] Squire, L.; Berg, D.; Bloom, F. E.; Du Lac, S.; Ghosh, A.; Spitzer, N. C., Fundamental neuroscience (2012), Academic Press
[33] Buck, J., Synchronous rhythmic flashing of fireflies. II., Q Rev Biol, 63, 265-289 (1988)
[34] Peskin, C. S., Mathematical aspects of heart physiology (1975), Courant Institute of Mathematical Sciences, New York University: Courant Institute of Mathematical Sciences, New York University New York · Zbl 0301.92001
[35] Brzeski, P.; Kapitaniak, T.; Perlikowski, P., Experimental verification of a hybrid dynamical model of the church bell, Int J Impact Eng, 80, 177-184 (2015)
[36] Lopera, A.; Buldú, J. M.; Torrent, M. C.; Chialvo, D. R.; García-Ojalvo, J., Ghost stochastic resonance with distributed inputs in pulse-coupled electronic neurons, Physical Review E, 73, 2, 21101 (2006)
[37] Rosin, D. P.; Rontani, D.; Gauthier, D. J.; Schöll, E., Control of synchronization patterns in neural-like boolean networks, Phys Rev Lett, 110, 10, 104102 (2013)
[38] http://ol.osa.org/abstract.cfm?URI=ol-19-24-2056
[39] Boyd, R. W.; Gauthier, D. J., Controlling the velocity of light pulses, Science, 326, 5956, 1074-1077 (2009)
[40] Otto, C.; Lüdge, K.; Vladimirov, A. G.; Wolfrum, M.; Schöll, E., Delay-induced dynamics and jitter reduction of passively mode-locked semiconductor lasers subject to optical feedback, New J Phys, 14, 11, 113033 (2012)
[41] Masri S., Caughey T.. On the stability of the impact damper1966;.
[42] Masri, S., General motion of impact dampers, J Acoust Soc Am, 47, 1B, 229-237 (1970)
[43] Aizerman, M.; Pyatnitskii, E., Foundations of a theory of discontinuous systems. 1., Autom Remote Control, 35, 7, 1066-1079 (1974) · Zbl 0293.93013
[44] Aizerman, M.; Pyatnitskii, E., Foundations of a theory of discontinuous systems. 1., Autom Remote Control, 35, 7, 1241-1262 (1974) · Zbl 0299.93003
[45] Luo, A. C.J., Regularity and complexity in dynamical systems (2012), Springer, New York · Zbl 1253.37003
[46] ISBN 978-3-642-22460-7; 978-7-04-031957-6/hbk · Zbl 1242.93001
[47] ISBN 978-3-319-17421-1/hbk; 978-3-319-17422-8/ebook · Zbl 1417.93020
[48] ISBN 978-1-118-35945-7/hbk; 978-1-118-40292-4/ebook · Zbl 1345.70002
[49] Bazhenov, V.; Lizunov, P.; Pogorelova, O.; Postnikova, T.; Otrashevskaia, V., Stability and bifurcations analysis for 2-dof vibroimpact system by parameter continuation method. part i: loading curve, Journal of Applied Nonlinear Dynamics, 4, 4, 357-370 (2015)
[50] Bazhenov, V.; Pogorelova, O.; Postnikova, T., Breakup of closed curve-quasiperiodic route to chaos in vibroimpact system, Discontinuity, Nonlinearity, and Complexity, 8, 3, 299-311 (2019)
[51] Tang, X.; Fu, X.; Sun, X., Periodic motion for an oblique impact system with single degree of freedom, Journal of Vibration Testing and Systems Dynamics, 3, 3, 71-89 (2019)
[52] Tang, X.; Fu, X.; Sun, X., The dynamical behavior of a two degrees of freedom oblique impact system, discontinuity, Nonlinearity, and Complexity, 9, 1, 117-139 (2020) · Zbl 1441.74143
[53] Luo, A. C.; O’Connor, D., Mechanism of impacting chatter with stick in a gear transmission system, Int J Bifurcation Chaos, 19, 06, 2093-2105 (2009)
[54] Luo, A. C.; O’Connor, D., Periodic motions and chaos with impacting chatter and stick in a gear transmission system, Int J Bifurcation Chaos, 19, 06, 1975-1994 (2009)
[55] Guo, S.; Luo, A., An analytical prediction of periodic motions in a discontinuous dynamical system, Journal of Vibration Testing and System Dynamics, 4, 4, 377-388 (2020)
[56] Guo, S.; Luo, A., Constructed limit cycles in a discontinuous dynamical system with multiple vector fields, Journal of Vibration Testing and System Dynamics, 5, 33-51 (2021)
[57] Guo, S.; Luo, A., A parameter study on periodic motions in a discontinuous dynamical system with two circular boundaries, Discontinuity, Nonlinearity, and Complexity, 10, 2, 289-309 (2021) · Zbl 1492.37054
[58] Akhmet, M.; Kıvılcım, A., Van der pol oscillators generated from grazing dynamics, Discontinuity, Nonlinearity, and Complexity, 7, 3, 259-274 (2018) · Zbl 1400.34050
[59] Huang, J.; Luo, A. C., Complex dynamics of bouncing motions at boundaries and corners in a discontinuous dynamical system, J Comput Nonlinear Dyn, 12, 6 (2017)
[60] http://epubs.siam.org/siap/resource/1/smjmap/v50/i6/p1645_s1?isAuthorized=no · Zbl 0712.92006
[61] http://www.ncbi.nlm.nih.gov/pubmed/10059062http://prl.aps.org/abstract/PRL/v74/i9/p1570_1
[62] Gerstner, W., Population dynamics of spiking neurons: fast transients, asynchronous states, and locking, Neural Comput, 12, 43-89 (2000)
[63] Brunel, N., Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons, J Comput Neurosci, 8, 3, 183-208 (2000) · Zbl 1036.92008
[64] Jahnke, S.; Memmesheimer, R. M.; Timme, M., Stable irregular dynamics in complex neural networks, Phys Rev Lett, 100, 4, 48102 (2008)
[65] Politi, A.; Ullner, E.; Torcini, A., Collective irregular dynamics in balanced networks of leaky integrate-and-fire neurons, European Physical Journal: Special Topics, 227, 10-11, 1185-1204 (2018)
[66] Brunel, N.; Wang, X.-J., Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition, J Comput Neurosci, 11, 1, 63-85 (2001)
[67] Guevara M.R., Glass L., Shrier A.. Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells. 1981.. http://www.medicine.mcgill.ca/physio/guevaralab/Guevara-Glass-Shrier-1981.pdf. 10.1126/science.7313693
[68] LaMar, M. D.; Smith, G. D., Effect of node-degree correlation on synchronization of identical pulse-coupled oscillators, Phys Rev E, 81, 4, 46206 (2010)
[69] Nunez, F.; Wang, Y.; Teel, A. R.; Doyle III, F. J., Synchronization of pulse-coupled oscillators to a global pacemaker, Systems & Control Letters, 88, 75-80 (2016) · Zbl 1336.93022
[70] Proskurnikov, A. V.; Cao, M., Synchronization of pulse-coupled oscillators and clocks under minimal connectivity assumptions, IEEE Trans Automat Contr, 62, 11, 5873-5879 (2016) · Zbl 1390.34098
[71] Viriyopase, A.; Memmesheimer, R.-M.; Gielen, S., Analyzing the competition of gamma rhythms with delayed pulse-coupled oscillators in phase representation, Physical Review E, 98, 2, 22217 (2018)
[72] Ermentrout, B.; Saunders, D., Phase resetting and coupling of noisy neural oscillators, J Comput Neurosci, 20, 2, 179 (2006) · Zbl 1119.92009
[73] Marella, S.; Ermentrout, G. B., Class-II neurons display a higher degree of stochastic synchronization than class-I neurons, Physical review E, 77, 4, 41918 (2008)
[74] Ermentrout, G.; Beverlin Bryce, I. I.; Troyer, T.; Netoff, T., The variance of phase-resetting curves, J Comput Neurosci, 31, 2, 185-197 (2011) · Zbl 1446.92044
[75] Miura, K.; Nakada, K., Synchronization analysis of resonate-and-fire neuron models with delayed resets, The 6th International Conference on Soft Computing and Intelligent Systems, and The 13th International Symposium on Advanced Intelligence Systems, 1076-1079 (2012), IEEE
[76] Ullner, E.; Politi, A., Self-sustained irregular activity in an ensemble of neural oscillators, Phys Rev X, 6, 1, 011015 (2016)
[77] Canavier, C. C.; Tikidji-Hamburyan, R. A., Globally attracting synchrony in a network of oscillators with all-to-all inhibitory pulse coupling, Physical Review E, 95, 3, 032215 (2017)
[78] Funato, T.; Yamamoto, Y.; Aoi, S.; Imai, T.; Aoyagi, T.; Tomita, N., Evaluation of the phase-dependent rhythm control of human walking using phase response curves, PLoS Comput Biol, 12, 5, e1004950 (2016)
[79] Fujiki, S.; Aoi, S.; Funato, T.; Sato, Y.; Tsuchiya, K.; Yanagihara, D., Adaptive hindlimb split-belt treadmill walking in rats by controlling basic muscle activation patterns via phase resetting, Sci Rep, 8, 1, 1-13 (2018)
[80] Matsuzaka, K.; Tanaka, H.; Ohkubo, S.; Morie, T., VLSI Implementation of coupled MRF model using pulse-coupled phase oscillators, Electron Lett, 51, 1, 46-48 (2014)
[81] Guardiola, X.; Díaz-Guilera, A.; Llas, M.; Pérez, C. J., Synchronization, diversity, and topology of networks of integrate and fire oscillators, Phys Rev E, 62, 4, 5565-5570 (2000)
[82] http://www.sciencedirect.com/science/article/pii/S0167278911003083 · Zbl 1252.34042
[83] Klinshov, V.; Lücken, L.; Shchapin, D.; Nekorkin, V.; Yanchuk, S., Multistable jittering in oscillators with pulsatile delayed feedback, Phys Rev Lett, 114, 17, 178103 (2015)
[84] Klinshov, V.; Lücken, L.; Yanchuk, S., Desynchronization by phase slip patterns in networks of pulse-coupled oscillators with delays: desynchronization by phase slip patterns, European Physical Journal: Special Topics, 227, 10-11, 1117-1128 (2018)
[85] Canavier, C. C., Phase response curve, Scholarpedia, 1, 12, 1332 (2006)
[86] Winfree, A. T., Biological rhythms and the behavior of populations of coupled oscillators, J Theor Biol, 16, 15-42 (1967)
[87] Pavlidis, T., Biological oscillators: their mathematical analysis (2012), Elsevier
[88] Klinshov, V.; Yanchuk, S.; Stephan, A.; Nekorkin, V., Phase response function for oscillators with strong forcing or coupling, EPL (Europhysics Letters), 118, 50006 (2017)
[89] Samoilenko, A. M.; Perestyuk, N. A., Differential equations with impulse effect, Visca Skola, Kiev, 286 (1987)
[90] Lakshmikantham, V.; Simeonov, P. S.; Others, Theory of impulsive differential equations, 6 (1989), World scientific · Zbl 0719.34002
[91] Goebel, R.; Sanfelice, R. G.; Teel, A. R., Hybrid dynamical systems, IEEE Control Syst Mag, 29, 2, 28-93 (2009) · Zbl 1395.93001
[92] Dirac, P. A.M., The principles of quantum mechanics (1981), Oxford university press · JFM 56.0745.05
[93] Henzinger, T. A., The theory of hybrid automata, Verification of digital and hybrid systems, 265-292 (2000), Springer · Zbl 0959.68073
[94] Alla, H.; David, R., Continuous and hybrid petri nets, Journal of Circuits, Systems, and Computers, 8, 01, 159-188 (1998)
[95] Gomes, C.; Van Tendeloo, Y.; Denil, J.; De Meulenaere, P.; Vangheluwe, H., Hybrid system modelling and simulation with dirac deltas, arXiv preprint arXiv:170204274 (2017)
[96] Swikir, A.; Girard, A.; Zamani, M., Symbolic models for a class of impulsive systems, IEEE Control Systems Letters, 5, 1, 247-252 (2021)
[97] Milman, V. D.; Myshkis, A. D., On the stability of motion in the presence of impulses, Sib Math J, 1, 2, 233-237 (1960) · Zbl 1358.34022
[98] Myshkis, A. D.; Samoilenko, A. M., Systems with impulses in prescribed moments of the time, Mat Sb, 74, 2, 202-208 (1967) · Zbl 0173.11101
[99] Halanay, A.; Wexler, D., Qualitative theory of impulsive systems, Acad RPR, Bucuresti (1968) · Zbl 0176.05202
[100] Akhmet, M., Principles of discontinuous dynamical systems (2010), Springer Science & Business Media · Zbl 1204.37002
[101] Perestyuk, N. A.; Plotnikov, V. A.; Samoilenko, A. M.; Skripnik, N. V., Differential equations with impulse effects: multivalued right-hand sides with discontinuities, 40 (2011), Walter de Gruyter · Zbl 1234.34002
[102] Perestyuk, N. A., Stability of solutions of the linear systems with impulsive action, Vestn Kiev Univ, Ser-Mat Mekh, 19, 71-76 (1977)
[103] Samoilenko, A. M.; Perestyuk, N. A., Stability of solutions to differential equations with impulsive influence, Differential Equations, 13, 1981-1992 (1977)
[104] Samoilenko, A. M.; Perestyuk, N., Stability of solutions of systems with impulses, Differential Equations, 17, 11, 1260-1264 (1982) · Zbl 0492.34040
[105] Gurgula, S. I.; Perestyuk, N. A., On the second Lyapunov method in impulsive systems, Dokl. Akad. Nauk Ukr. SSR, Ser. A, 11-14 (1982) · Zbl 0502.34038
[106] Samoilenko, A. M., Application of the averaging method for studying oscillations induced by instantaneous impulses in self-oscillation systems of second order with a small parameter, Ukrainian Mathematical Journal, 13, 103-108 (1961)
[107] Samoilenko, A. M., Averaging method for investigating systems subjected to an impulsive action, Ukrainian Mathematical Journal, 19, 5, 586-593 (1967) · Zbl 0206.38203
[108] Mitropol’skii, Y. A.; Samoilenko, A. M.; Perestyuk, N. A., The averaging method in systems with impulse action, Ukrainian Mathematical Journal, 37, 56-64 (1985)
[109] Haddad, W. M.; Chellaboina, V.; Nersesov, S. G., Impulsive and hybrid dynamical systems: stability, dissipativity, and control, 49 (2006), Princeton University Press · Zbl 1114.34001
[110] Liu, B.; Sun, Z.; Xu, B.; Liu, D.-N., Input-to-state contraction for impulsive systems, Int J Control, 1-11 (2020)
[111] Liu, X.; Ramirez, C., Stability analysis by contraction principle for impulsive systems with infinite delays, Commun Nonlinear Sci Numer Simul, 82, 105021 (2020) · Zbl 1455.34074
[112] Wang, Y.; Lu, J., Some recent results of analysis and control for impulsive systems, Commun Nonlinear Sci Numer Simul, 80, 104862 (2020) · Zbl 1471.34124
[113] Benchohra, M.; Henderson, J.; Ntouyas, S., Impulsive differential equations and inclusions, 2 (2006), Hindawi Publishing Corporation New York · Zbl 1130.34003
[114] Bonotto, E.; Bortolan, M.; Carvalho, A.; Czaja, R., Global attractors for impulsive dynamical systems-a precompact approach, J Differ Equ, 259, 7, 2602-2625 (2015) · Zbl 1356.37042
[115] Kapustyan, O.; Perestyuk, M., Global attractors in impulsive infinite-dimensional systems, Ukr Math J, 68, 4, 517-528 (2016) · Zbl 1490.37094
[116] Dashkovskiy, S.; Feketa, P.; Kapustyan, O.; Romaniuk, I., Invariance and stability of global attractors for multi-valued impulsive dynamical systems, J Math Anal Appl, 458, 1, 193-218 (2018) · Zbl 1378.37120
[117] de Mello Bonotto, E.; Kalita, P., On attractors of generalized semiflows with impulses, The Journal of Geometric Analysis, 1-38 (2019)
[118] Dashkovskiy, S.; Feketa, P., Input-to-state stability of impulsive systems with different jump maps, IFAC-PapersOnLine, 49, 18, 1073-1078 (2016)
[119] Tang, Y.; Xing, X.; Karimi, H. R.; Kocarev, L.; Kurths, J., Tracking control of networked multi-agent systems under new characterizations of impulses and its applications in robotic systems, IEEE Trans Ind Electron, 63, 2, 1299-1307 (2015)
[120] Liu, X., Stability results for impulsive differential systems with applications to population growth models, Dynamics and stability of systems, 9, 2, 163-174 (1994) · Zbl 0808.34056
[121] Rogovchenko, Y. V., Nonlinear impulse evolution systems and applications to population models, J Math Anal Appl, 207, 2, 300-315 (1997) · Zbl 0876.34011
[122] Yang, X.; Peng, D.; Lv, X.; Li, X., Recent progress in impulsive control systems, Math Comput Simul, 155, 244-268 (2019) · Zbl 1540.93100
[123] Ren, H.-P.; Yang, Y.; Baptista, M. S.; Grebogi, C., Tumour chemotherapy strategy based on impulse control theory, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375, 2088, 20160221 (2017) · Zbl 1404.92103
[124] Dvornyk, A. V.; Tkachenko, V. I., Almost periodic solutions of the lotka-Volterra systems with diffusion and nonfixed times of pulsed action, Journal of Mathematical Sciences, 243, 3, 358-380 (2019) · Zbl 1429.35118
[125] Zhang, X.; Li, C.; Huang, T., Hybrid impulsive and switching hopfield neural networks with state-dependent impulses, Neural Networks, 93, 176-184 (2017) · Zbl 1432.93120
[126] Dishliev, A.; Dishlieva, K.; Nenov, S., Specific asymptotic properties of the solutions of impulsive differential equations. methods and applications (2012), Academic Publication
[127] Urmanchev, V. I., Methods for the investigation of dynamical systems with impulse action and mortal dynamical systems, Ukrainian Mathematical Journal, 44, 11, 1479-1486 (1992) · Zbl 0798.54049
[128] Anokhin, A.; Berezansky, L.; Braverman, E., Exponential stability of linear delay impulsive differential equations, J Math Anal Appl, 193, 3, 923-941 (1995) · Zbl 0837.34076
[129] Bainov D. Simeonov P.. Impulsive differential equations: periodic solutions and applications. Routledge, 2017. · Zbl 0815.34001
[130] Liu, X.; Ballinger, G., Uniform asymptotic stability of impulsive delay differential equations, Computers & Mathematics with Applications, 41, 7-8, 903-915 (2001) · Zbl 0989.34061
[131] Liu, X., Stability of impulsive control systems with time delay, Math Comput Model, 39, 4-5, 511-519 (2004) · Zbl 1081.93021
[132] Naghshtabrizi, P.; Hespanha, J. P.; Teel, A. R., Stability of delay impulsive systems with application to networked control systems, Trans Inst Meas Control, 32, 5, 511-528 (2010)
[133] Li, X.; Cao, J., An impulsive delay inequality involving unbounded time-varying delay and applications, IEEE Trans Automat Contr, 62, 7, 3618-3625 (2017) · Zbl 1370.34131
[134] Church, K. E.; Liu, X., Smooth centre manifolds for impulsive delay differential equations, J Differ Equ, 265, 4, 1696-1759 (2018) · Zbl 1503.34125
[135] Muthulakshmi, V.; Manjuram, R., Interval criteria for oscillation of damped second-order nonlinear impulsive differential equation with variable delay, Discontinuity, Nonlinearity, and Complexity, 8, 4, 403-418 (2019) · Zbl 1501.34058
[136] Xie, G.; Wang, L., Necessary and sufficient conditions for controllability and observability of switched impulsive control systems, IEEE Trans Automat Contr, 49, 6, 960-966 (2004) · Zbl 1365.93049
[137] Li, X.; Li, P.; Wang, Q.-g., Input/output-to-state stability of impulsive switched systems, Systems & Control Letters, 116, 1-7 (2018) · Zbl 1417.93279
[138] Slynko, V.; Tunç, C., Stability of abstract linear switched impulsive differential equations, Automatica, 107, 433-441 (2019) · Zbl 1429.93272
[139] Mancilla-Aguilar, J. L.; Haimovich, H., Uniform input-to-state stability for switched and time-varying impulsive systems, IEEE Trans Automat Contr (2020) · Zbl 1536.93742
[140] Luo, A. C.; Wang, Y., Periodic flows and stability of a switching system with multiple subsystems, Dynamics of Continuous Discrete and Impulsive Systems, 16, 825-848 (2009) · Zbl 1181.37017
[141] Luo, A. C.; Wang, Y., Switching dynamics of multiple linear oscillators, Commun Nonlinear Sci Numer Simul, 14, 8, 3472-3485 (2009) · Zbl 1221.34084
[142] Yang, Z.; Xu, D.; Xiang, L., Exponential p-stability of impulsive stochastic differential equations with delays, Phys Lett A, 359, 2, 129-137 (2006) · Zbl 1236.60061
[143] Liu, B., Stability of solutions for stochastic impulsive systems via comparison approach, IEEE Trans Automat Contr, 53, 9, 2128-2133 (2008) · Zbl 1367.93523
[144] Li, C.; Shi, J.; Sun, J., Stability of impulsive stochastic differential delay systems and its application to impulsive stochastic neural networks, Nonlinear Analysis: Theory, Methods & Applications, 74, 10, 3099-3111 (2011) · Zbl 1218.34097
[145] Kapustyan, O.; Perestyuk, M.; Romanyuk, I., Stability of global attractors of impulsive infinite-dimensional systems, Ukrainian Mathematical Journal, 70, 1, 30-41 (2018) · Zbl 1427.35343
[146] Bonotto, E. M.; Souto, G. M., On the lyapunov stability theory for impulsive dynamical systems, Topol Methods Nonlinear Anal, 53, 1, 127-150 (2019) · Zbl 1415.37017
[147] Dashkovskiy, S.; Feketa, P.; Kapustyan, O. V.; Romaniuk, I. V., Existence and invariance of global attractors for impulsive parabolic system without uniqueness, Modern Mathematics and Mechanics. Understanding Complex Systems, 57-78 (2019), Springer · Zbl 1416.35045
[148] de Mello Bonotto, E.; Demuner, D. P., Stability and forward attractors for non-autonomous impulsive semidynamical systems, Communications on Pure & Applied Analysis, 19, 4, 1979 (2020) · Zbl 1476.37046
[149] Dashkovskiy, S.; Kapustyan, O.; Perestyuk, Y., Stability of uniform attractors of impulsive multi-valued semiflows, Nonlinear Anal Hybrid Syst, 40, 101025 (2021) · Zbl 1485.37021
[150] Agarwal, R.; Hristova, S.; ORegan, D., Non-instantaneous impulses in differential equations, Non-Instantaneous Impulses in Differential Equations, 1-72 (2017), Springer · Zbl 1426.34001
[151] Wang, J.; Fečkan, M.; Tian, Y., Stability analysis for a general class of non-instantaneous impulsive differential equations, Mediterranean Journal of Mathematics, 14, 2, 46 (2017) · Zbl 1373.34031
[152] Wang, J.; Fečkan, M., Non-instantaneous impulsive differential equations (2018), IOP Publishing
[153] http://www.sciencedirect.com/science/article/pii/S1007570411006356 · Zbl 1252.35277
[154] Wang, J.; Fečkan, M.; Zhou, Y., A survey on impulsive fractional differential equations, Fractional Calculus and Applied Analysis, 19, 4, 806 (2016) · Zbl 1344.35169
[155] Stamova, I.; Stamov, G., Functional and impulsive differential equations of fractional order: qualitative analysis and applications (2017), CRC Press · Zbl 1365.34003
[156] Kumar, K.; Kumar, R., Boundary controllability of fractional order nonlocal semi-linear neutral evolution systems with impulsive condition, Discontinuity, Nonlinearity, and Complexity, 8, 4, 419-428 (2019) · Zbl 1497.93017
[157] Heemels, W. P.M. H.; Teel, A. R.; de Wouw, N.; Nešić, D., Networked control systems with communication constraints: tradeoffs between transmission intervals, delays and performance, IEEE Trans Automat Contr, 55, 8, 1781-1796 (2010) · Zbl 1368.93627
[158] Postoyan, R.; Tabuada, P.; Nešić, D.; Anta, A., A framework for the event-triggered stabilization of nonlinear systems, IEEE Trans Automat Contr, 60, 4, 982-996 (2014) · Zbl 1360.93567
[159] Sanfelice R.. Hybrid Equations Toolbox. 2020. https://www.mathworks.com/matlabcentral/fileexchange/41372-hybrid-equations-toolbox-v2-04.
[160] Sanfelice, R. G., Interconnections of hybrid systems: some challenges and recent results, Journal of Nonlinear Systems and Applications, 2, 1-2, 111-121 (2011)
[161] Collins, P., Generalised hybrid trajectory spaces, Proc. 17th Int. Symp. Mathematical Theory of Networks and Systems, 2101-2109 (2006)
[162] Dashkovskiy, S.; Feketa, P., Prolongation and stability of zeno solutions to hybrid dynamical systems, IFAC-PapersOnLine, 50, 1, 3429-3434 (2017)
[163] Dashkovskiy, S.; Feketa, P., Asymptotic properties of zeno solutions, Nonlinear Anal Hybrid Syst, 30, 256-265 (2018) · Zbl 1507.34017
[164] Rudin, W., Functional analysis, mcgrawhill, Inc, New York (1991) · Zbl 0867.46001
[165] http://www.sciencedirect.com/science/article/pii/S0167278901003748http://www.sciencedirect.com/science/article/B6TVK-44T52GC-1/2/c16c132c2571304f7c61c8e1949228f2 · Zbl 1008.70017
[166] Klinshov, V.; Lücken, L.; Shchapin, D.; Nekorkin, V.; Yanchuk, S., Emergence and combinatorial accumulation of jittering regimes in spiking oscillators with delayed feedback, Physical Review E, 92, 4, 042914 (2015)
[167] http://www.ncbi.nlm.nih.gov/pubmed/18252549
[168] Klinshov, V.; Lücken, L.; Feketa, P., On the interpretation of dirac \(\delta\) pulses in differential equations for phase oscillators, Chaos: An Interdisciplinary Journal of Nonlinear Science, 31, 3, 031102 (2021) · Zbl 1459.34091
[169] Blanton J.. Reformulations for control systems and optimization problems with impulses2014;.
[170] Catllá, A. J.; Schaeffer, D. G.; Witelski, T. P.; Monson, E. E.; Lin, A. L., On spiking models for synaptic activity and impulsive differential equations, SIAM Rev, 50, 3, 553-569 (2008) · Zbl 1166.34004
[171] Maran, S. K.; Canavier, C. C., Using phase resetting to predict 1:1 and 2:2 locking in two neuron networks in which firing order is not always preserved, J Comput Neurosci, 24, 1, 37-55 (2008)
[172] Klinshov, V. V.; Nekorkin, V. I., Synchronization of time-delay coupled pulse oscillators, Chaos, Solitons and Fractals, 44, 98-107 (2011)
[173] Dashkovskiy, S.; Mironchenko, A., Input-to-state stability of nonlinear impulsive systems, SIAM J Control Optim, 51, 3, 1962-1987 (2013) · Zbl 1271.34011
[174] Martynyuk, A.; Slyn’ko, V., Stability of a nonlinear impulsive system, Int Appl Mech, 40, 2, 231-239 (2004) · Zbl 1079.34525
[175] Feketa, P.; Bajcinca, N., Stability of nonlinear impulsive differential equations with non-fixed moments of jumps, 2018 European Control Conference (ECC), 900-905 (2018), IEEE
[176] Ignatyev, A. O., On the stability of invariant sets of systems with impulse effect, Nonlinear Analysis: Theory, Methods & Applications, 69, 1, 53-72 (2008) · Zbl 1145.34032
[177] Hespanha, J. P.; Liberzon, D.; Teel, A. R., Lyapunov conditions for input-to-state stability of impulsive systems, Automatica, 44, 11, 2735-2744 (2008) · Zbl 1152.93050
[178] Hespanha, J. P.; Liberzon, D.; Teel, A. R., On input-to-state stability of impulsive systems, Proceedings of the 44th IEEE Conference on Decision and Control, 3992-3997 (2005), IEEE
[179] Tan, J.; Li, C.; Huang, T., Stability of impulsive systems with time window via comparison method, Int J Control Autom Syst, 13, 6, 1346-1350 (2015)
[180] Feng, Y.; Yu, J.; Li, C.; Huang, T.; Che, H., Linear impulsive control system with impulse time windows, J Vib Control, 23, 1, 111-118 (2017) · Zbl 1373.49037
[181] Feketa, P.; Bajcinca, N., On robustness of impulsive stabilization, Automatica, 104, 48-56 (2019) · Zbl 1415.93215
[182] Dashkovskiy, S.; Feketa, P., Input-to-state stability of impulsive systems and their networks, Nonlinear Anal Hybrid Syst, 26, 190-200 (2017) · Zbl 1373.93294
[183] Feketa, P.; Bajcinca, N., Average dwell-time for impulsive control systems possessing ISS-Lyapunov function with nonlinear rates, 2019 18th European Control Conference (ECC), 3686-3691 (2019), IEEE
[184] Feketa, P.; Schaum, A.; Meurer, T., On a lyapunov characterization of input-to-state stability for impulsive systems with unstable continuous dynamics, Contemporary Approaches and Methods in Fundamental Mathematics and Mechanics, 369-380 (2021), Springer · Zbl 1482.93524
[185] Mancilla-Aguilar, J. L.; Haimovich, H.; Feketa, P., Uniform stability of nonlinear time-varying impulsive systems with eventually uniformly bounded impulse frequency, Nonlinear Anal Hybrid Syst, 38, 100933 (2020) · Zbl 1478.93574
[186] Haimovich, H.; Mancilla-Aguilar, J. L., Nonrobustness of asymptotic stability of impulsive systems with inputs, Automatica, 122, 109238 (2020) · Zbl 1451.93303
[187] Mancilla-Aguilar, J. L.; Haimovich, H., Converging-input convergent-state and related properties of time-varying impulsive systems, IEEE Control Systems Letters, 4, 3, 680-685 (2020)
[188] Beggs, J. M.; Plenz, D., Neuronal avalanches in neocortical circuits, J Neurosci, 23, 35, 11167-11177 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.