×

Two-cluster bifurcations in systems of globally pulse-coupled oscillators. (English) Zbl 1252.34042

The paper investigates the emergence and stability of in-phase synchronized and two-cluster states in a system of globally pulse-coupled identical phase oscillators. The coupling among oscillators is based on the phase response curve (PRC) which reflects a phase shift in oscillatory dynamics of an individual oscillator in response to a precisely timed perturbation. PRC is widely used for the modeling of biological and neural oscillators. For the dynamics of the network reduced to a two-cluster subspace, a one-dimensional map is obtained, and the stability conditions for the above states are derived in relation to the properties of the PRC. It is also shown that a two-cluster state can emerge from the one-cluster state via a pitchfork bifurcation. A special case of smooth PRCs vanishing at the onset of spike together with their first derivatives is considered in detail. The obtained analytical results are illustrated on numerical example given by a one-parameter family of PRCs of type I with positive coupling constant modeling an excitatory coupling in neural networks. For such large networks a completely synchronous state appears to be locally unstable, however, it forms an attractive homoclinic loop which supports an intermittent synchronized dynamics. As the shape of PRC changes, numerous two-cluster states bifurcate from the in-phase synchronized state. The corresponding parameter region of multiple co-existing stable two-cluster states is found in the space of PRC parameter and cluster configuration. The observed phenomena are also shown to be robust with respect to small parameter perturbations.

MSC:

34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34D06 Synchronization of solutions to ordinary differential equations
34D20 Stability of solutions to ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
34D10 Perturbations of ordinary differential equations

References:

[1] Pikovsky, A.; Rosenblum, M.; Kurths, J., Synchronization. A Universal Concept in Nonlinear Sciences (2001), Cambridge University Press · Zbl 0993.37002
[2] Strogatz, S. H., Exploring complex networks, Nature, 410, 268-276 (2001) · Zbl 1370.90052
[3] Wünsche, H.-J.; Bauer, S.; Kreissl, J.; Ushakov, O.; Korneyev, N.; Henneberger, F.; Wille, E.; Erzgräber, H.; Peil, M.; Elsäßer, W.; Fischer, I., Synchronization of delay-coupled oscillators: a study of semiconductor lasers, Phys. Rev. Lett., 94, 163901-1-163901-4 (2005)
[4] Fischer, I.; Vicente, R.; Buldú, J. M.; Peil, M.; Mirasso, C. R.; Torrent, M. C.; Garcia-Ojalvo, J., Zero-lag long-range synchronization via dynamical relaying, Phys. Rev. Lett., 97 (2006)
[5] Yanchuk, S.; Schneider, K. R.; Recke, L., Dynamics of two mutually coupled semiconductor lasers: instantaneous coupling limit, Phys. Rev. E, 69, 056221-1-056221-12 (2004)
[6] Yanchuk, S.; Stefanski, A.; Kapitaniak, T.; Wojewoda, J., Dynamics of an array of coupled semiconductor lasers, Phys. Rev. E, 73, 016209-1-016209-7 (2006)
[7] Cuomo, K. M.; Oppenheim, A. V., Circuit implementation of synchronized chaos with applications to communications, Phys. Rev. Lett., 71, 65-68 (1993)
[8] Kanter, I.; Kopelowitz, E.; Kinzel, W., Public channel cryptography: chaos synchronization and Hilbert’s tenth problem, Phys. Rev. Lett., 101, 084102 (2008)
[9] Mosekilde, E.; Maistrenko, Y.; Postnov, D., Chaotic Synchronization. Application to Living Systems (2002), World Scientific · Zbl 0999.37022
[10] Perlikowski, P.; Stefanski, A.; Kapitaniak, T., 1:1 mode locking and generalized synchronization in mechanical oscillators, J. Sound Vib., 318, 329-340 (2008)
[11] Perlikowski, P.; Yanchuk, S.; Wolfrum, M.; Stefanski, A.; Mosiolek, P.; Kapitaniak, T., Routes to complex dynamics in a ring of unidirectionally coupled systems, Chaos, 20, 013111 (2010)
[12] Tass, P., (Phase Resetting in Medicine and Biology. Stochastic Modelling and Data Analysis. Phase Resetting in Medicine and Biology. Stochastic Modelling and Data Analysis, Springer Series in Synergetics (1999), Springer) · Zbl 0935.92014
[13] Timme, M.; Geisel, T.; Wolf, F., Speed of synchronization in complex networks of neural oscillators: analytic results based on random matrix theory, Chaos, 16, 015108 (2006) · Zbl 1144.37412
[14] Popovych, O. V.; Hauptmann, C.; Tass, P. A., Control of neuronal synchrony by nonlinear delayed feedback, Biol. Cybernet., 95, 69-85 (2006) · Zbl 1169.93338
[15] Elble, R.; Koller, W., Tremor (1990), The John Hopkins University Press
[16] Tass, P., A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations, Biol. Cybernet., 89, 81-88 (2003) · Zbl 1084.92009
[17] Ashwin, P.; Swift, J., The dynamics of \(n\) weakly coupled identical oscillators, J. Nonlinear Sci., 2, 69-108 (1992) · Zbl 0872.58049
[18] Stewart, I.; Golubitsky, M.; Pivato, M., Symmetry groupoids and patterns of synchrony in coupled cell networks, SIAM J. Appl. Dyn. Syst., 2, 609-646 (2003) · Zbl 1089.34032
[19] Golubitsky, M.; Stewart, I.; Torok, A., Patterns of synchrony in coupled cell networks with multiple arrows, SIAM J. Appl. Dyn. Syst., 4, 78-100 (2005) · Zbl 1090.34030
[20] Wang, Y.; Golubitsky, M., Two-color patterns of synchrony in lattice dynamical systems, Nonlinearity, 18, 631-657 (2005) · Zbl 1066.34049
[21] Goel, P.; Ermentrout, B., Synchrony, stability, and firing patterns in pulse-coupled oscillators, Physica D, 163, 191-216 (2002) · Zbl 1008.70017
[22] Mirollo, R.; Strogatz, S., Synchronization of pulse-coupled biological oscillators, SIAM J. Appl. Math., 50, 1645-1662 (1990) · Zbl 0712.92006
[23] Bottani, S., Synchronization of integrate and fire oscillators with global coupling, Phys. Rev. E, 54, 2334-2350 (1996)
[24] LaMar, M. D.; Smith, G. D., Effect of node-degree correlation on synchronization of identical pulse-coupled oscillators, Phys. Rev. E, 81, 046206 (2010)
[25] Bressloff, P. C.; Coombes, S.; de Souza, B., Dynamics of a ring of pulse-coupled oscillators: group-theoretic approach, Phys. Rev. Lett., 79, 2791-2794 (1997)
[26] Brown, E.; Moehlis, J.; Holmes, P., On the phase reduction and response dynamics of neural oscillator populations, Neural Comput., 16, 673-715 (2004) · Zbl 1054.92006
[27] Winfree, A., The Geometry of Biological Time (2001), Springer · Zbl 1014.92001
[28] Ermentrout, B., Type I membranes, phase resetting curves, and synchrony, Neural Comput., 8, 979-1001 (1996)
[29] Hoppensteadt, F.; Izhikevich, E., Weakly Connected Neural Networks (1997), Springer-Verlag: Springer-Verlag New York · Zbl 0887.92003
[30] Novicenko, V.; Pyragas, K., Computation of phase response curves via a direct method adapted to infinitesimal perturbations, Nonlinear Dynam., 1-10 (2011)
[31] Achuthan, S.; Canavier, C., Phase-resetting curves determine synchronization, phase locking, and clustering in networks of neural oscillators, J. Neurosci., 29, 16, 5218-5233 (2009)
[32] Stiefel, K.; Gutkin, B.; Sejnowski, T., The effects of cholinergic neuromodulation on neuronal phase-response curves of modeled cortical neurons, J. Comput. Neurosci., 26, 289-301 (2009)
[33] Sato, Y.; Okumura, K.; Ichiki, A.; Shiino, M., Thermal effects on phase response curves and synchronization transition, (Liu, D.; Zhang, H.; Polycarpou, M.; Alippi, C.; He, H., Advances in Neural Networks—ISNN 2011. Advances in Neural Networks—ISNN 2011, Lecture Notes in Computer Science, vol. 6675 (2011), Springer: Springer Berlin, Heidelberg), 287-296
[34] Orosz, G.; Moehlis, J.; Ashwin, P., Designing the dynamics of globally coupled oscillators, Progr. Theoret. Phys., 122, 611-630 (2009) · Zbl 1196.34046
[35] Izhikevich, E. M., Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (2005), The MIT Press
[36] Kuramoto, Y., Chemical Oscillations, Waves, and Turbulence (1984), Springer: Springer Berlin · Zbl 0558.76051
[37] Strogatz, S. H.; Mirollo, R. E.; Matthews, P. C., Coupled nonlinear oscillators below the synchronization threshold: relaxation by generalized Landau damping, Phys. Rev. Lett., 68, 2730-2733 (1992) · Zbl 0969.92501
[38] Memmesheimer, R.-M.; Timme, M., Designing complex networks, Dynamics on Complex Networks and Applications. Dynamics on Complex Networks and Applications, Physica D, 224, 182-201 (2006) · Zbl 1144.37468
[39] Hansel, D.; Mato, G.; Meunier, C., Clustering and slow switching in globally coupled phase oscillators, Phys. Rev. E, 48, 3470-3477 (1993)
[40] Okuda, K., Variety and generality of clustering in globally coupled oscillators, Physica D, 63, 424-436 (1993) · Zbl 0850.70262
[41] Lücken, L.; Yanchuk, S., Emergence of one- and two-cluster states in populations of globally pulse-coupled oscillators, (Nonlinear Laser Dynamics—From Quantum Dots to Cryptography (2011), Wiley and Blackwell) · Zbl 1252.34042
[42] Eckhaus, W., (Studies in Non-Linear Stability Theory. Studies in Non-Linear Stability Theory, Springer Tracts in Natural Philosophy, vol. 6 (1965), Springer: Springer New York) · Zbl 0125.33101
[43] Wolfrum, M.; Yanchuk, S., Eckhaus instability in systems with large delay, Phys. Rev. Lett., 96, 220201-1-220201-4 (2006)
[44] Kirst, C.; Timme, M., Partial reset in pulse-coupled oscillators, SIAM J. Appl. Math., 70, 2119-2149 (2010) · Zbl 1218.92005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.