×

Stability analysis for a general class of non-instantaneous impulsive differential equations. (English) Zbl 1373.34031

In 1995, in the monograph by A. M. Samoilenko and N. A. Perestyuk [Impulsive differential equations. Transl. from the Russian by Yury Chapovsky. Singapore: World Scientific (1995; Zbl 0837.34003)], necessary and sufficient conditions for the exponential stability have been established for the first order impulsive differential equations
\[ x'(t)=Ax(t);\quad t\neq t_i,\tag{1a} \]
\[ x(t^+_i)-x(t^-_i)=Bx(t^-_i)\tag{1b} \]
for \(i=1,2,\ldots\). They used the basic properties of the Cauchy matrix to prove their results. For example, the solution of (1a)–(1b) can be explained by the equation
\[ X(t,t_0)=e^{A(t-t_i)}\prod_{t<t_j<t_j}(I+B)e^{A(t_j-t_j-1)},\qquad t_i<t\leq t_{i+1}. \]
In the present paper, the authors modify the approach given in [loc cit.] to the impulsive equations, they obtain some stability results.
The first result concerns the asymptotic stability of equations of the form:
\[ \begin{aligned} &x'(t)=Ax(t);\qquad t\in[s_i,t_{i+1}],\\ &x(t^+_i)=Bx(t^-_i),\\ &x(t)=Bx(t^-_i);\qquad t\in(t_i,s_i],\\ &x(s^+_i)=x(s^-_i) \end{aligned} \]
for \(i=1,2,\ldots\), the second concerns the asymptotic stability of the equations of the form:
\[ \begin{aligned} &z'(t)=Az(t)+P(t)z(t);\qquad t\in[s_i,t_{i+1}],\\ &z(t^+_i)=Bz(t^-_i)+I_iz(t^-_i),\\ &z(t)=Bz(t^-_i)+I_iz(t^-_i);\qquad t\in(t_i,s_i],\\ &z(s^+_i)=z(s^-_i)\end{aligned} \]
for \(i=1,2,\ldots\). Finally, they investigate the existence, uniqueness of solutions and the Ulam-Hyers-Rassias stability of the more general impulsive equations of the form: \[ \begin{aligned} &y'(t)=Ay(t)+g(t,y(t));\qquad t\in[s_i,t_{i+1}],\\ &y(t^+_i)=By(t^-_i)+b_i,\\ &y(t)=By(t^-_i)+b_i;\qquad t\in(t_i,s_i],\\ &y(s^+_i)=y(s^-_i)\end{aligned} \]
for \(i=1,2,\ldots\).

MSC:

34A37 Ordinary differential equations with impulses
34D20 Stability of solutions to ordinary differential equations
34D10 Perturbations of ordinary differential equations

Citations:

Zbl 0837.34003
Full Text: DOI

References:

[1] Myshkis, A.D., Samoilenko, A.M.: Sytems with impulsive at fixed moments of time. Mat. Sb. 74, 202-208 (1967)
[2] Hernández, E., O’Regan, D.: On a new class of abstract impulsive differential equations. Proc. Am. Math. Soc. 141, 1641-1649 (2013) · Zbl 1266.34101 · doi:10.1090/S0002-9939-2012-11613-2
[3] Bainov, D.D., Simeonov, P.S.: Impulsive Differential Equations: Periodic Solutions and Applications. Longman Scientific & Technical, Harlow (1993) · Zbl 0815.34001
[4] Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations. Series on Advances in Mathematics for Applied Sciences, vol. 28. World Scientific, Singapore (1995) · Zbl 0828.34002
[5] Bainov, D.D., Simeonov, P.S.: Oscillation Theory of Impulsive Differential Equations. International Publications, Orlando (1998) · Zbl 0949.34002
[6] Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations. Series in Modern Applied Mathematics, vol. 6. World Scientific, Singapore (1989) · Zbl 0719.34002 · doi:10.1142/0906
[7] Samoilenko, A.M., Perestyuk, N.A., Chapovsky, Y.: Impulsive Differential Equations. World Scientific, Singapore (1995) · Zbl 0837.34003 · doi:10.1142/2892
[8] Benchohra, M., Henderson, J., Ntouyas, S.K.: Impulsive Differential Equations and Inclusions. Hindawi Publishing Corporation, Cairo (2006) · Zbl 1130.34003 · doi:10.1155/9789775945501
[9] Akhmet, M.U., Alzabut, J., Zafer, A.: Perron’s theorem for linear impulsive differential equations with distributed delay. J. Comput. Appl. Math. 193, 204-218 (2006) · Zbl 1101.34065 · doi:10.1016/j.cam.2005.06.004
[10] Agarwal, R.P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta. Appl. Math. 109, 973-1033 (2010) · Zbl 1198.26004 · doi:10.1007/s10440-008-9356-6
[11] Shao, Y., Li, Y., Xu, C.: Periodic solutions for a class of nonautonomous differential system with impulses and time-varying delays. Acta. Appl. Math. 115, 105-121 (2011) · Zbl 1247.34121 · doi:10.1007/s10440-010-9598-y
[12] Yuan, X., Xia, Y.H., O’Regan, D.: Nonautonomous impulsive systems with unbounded nonlinear terms. Appl. Math. Comput. 245, 391-403 (2014) · Zbl 1335.34040
[13] Sun, J., Chu, J., Chen, H.: Periodic solution generated by impulses for singular differential equations. J. Math. Anal. Appl. 404, 562-569 (2013) · Zbl 1304.34076 · doi:10.1016/j.jmaa.2013.03.036
[14] Fan, Z., Li, G.: Existence results for semilinear differential equations with nonlocal and impulsive conditions. J. Funct. Anal. 258, 1709-1727 (2010) · Zbl 1193.35099 · doi:10.1016/j.jfa.2009.10.023
[15] Pierri, M., O’Regan, D., Rolnik, V.: Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses. Appl. Math. Comput. 219, 6743-6749 (2013) · Zbl 1293.34019
[16] Fečkan, M., Wang, J., Zhou, Y.: Existence of periodic solutions for nonlinear evolution equations with non-instantaneous impulses. Nonauton. Dyn. Syst. 1, 93-101 (2014) · Zbl 1311.34094
[17] Wang, J., Fečkan, M.: A general class of impulsive evolution equations. Topol. Methods Nonlinear Anal. 46, 915-934 (2015) · Zbl 1381.34081
[18] Wang, J., Fečkan, M., Zhou, Y.: A survey on impulsive fractional differential equations. Fract. Calc. Appl. Anal. 19, 806-831 (2016) · Zbl 1344.35169 · doi:10.1515/fca-2016-0044
[19] Pierri, M., Henríquez, H.R., Prokczyk, A.: Global solutions for abstract differential equations with non-instantaneous impulses. Mediterr. J. Math. 13, 1685-1708 (2016) · Zbl 1353.34071
[20] Hernández, E., Pierri, M., O’Regan, D.: On abstract differential equations with non instantaneous impulses. Topol. Methods Nonlinear Anal. 46, 1067-1085 (2015) · Zbl 1360.34131
[21] Agarwal, R., O’Regan, D., Hristova, S.: Stability by Lyapunov like functions of nonlinear differential equations with non-instantaneous impulses. J. Appl. Math. Comput. 53, 147-168 (2017) · Zbl 1361.34064
[22] Agarwal, R., O’Regan, D., Hristova, S.: Stability by Lyapunov functions of Caputo fractional differential equations with non-instantaneous impulses. Electron. J. Differ. Eq. 58, 1-22 (2016) · Zbl 1353.34005
[23] Wang, J., Zhou, Y., Lin, Z.: On a new class of impulsive fractional differential equations. Appl. Math. Comput. 242, 649-657 (2014) · Zbl 1334.34022
[24] Wang, J., Lin, Z., Zhou, Y.: On the stability of new impulsive differential equations. Topol. Methods Nonlinear Anal. 45, 303-314 (2015) · Zbl 1365.34028
[25] Wang, J.; Fečkan, M.; Zhou, Y.; Luo, A. (ed.); Merdan, H. (ed.), Random noninstantaneous impulsive models for studying periodic evolution processes in pharmacotherapy, No. 14 (2016), Berlin · Zbl 1419.34133
[26] Abbas, S., Benchohra, M.: Uniqueness and Ulam stabilities results for partial fractional differential equations with not instantaneous impulses. Appl. Math. Comput. 257, 190-198 (2015) · Zbl 1338.35455
[27] Gautam, G.R., Dabas, J.: Mild solutions for class of neutral fractional functional differential equations with not instantaneous impulses. Appl. Math. Comput. 259, 480-489 (2015) · Zbl 1390.34221
[28] Yan, Z., Lu, F.: The optimal control of a new class of impulsive stochastic neutral evolution integro-differential equations with infinite delay. Int. J. Control 89, 1592-1612 (2016) · Zbl 1353.93120 · doi:10.1080/00207179.2016.1140229
[29] Zada, A., Shah, O., Shah, R.: Hyers-Ulam stability of non-autonomous systems in terms of boundedness of Cauchy problems. Appl. Math. Comput. 271, 512-518 (2015) · Zbl 1410.39049
[30] Barbu, D., Buşe, C., Tabassum, A.: Hyers-Ulam stability and discrete dichotomy. J. Math. Anal. Appl. 42, 1738-1752 (2015) · Zbl 1310.39017 · doi:10.1016/j.jmaa.2014.10.082
[31] Buşe, C., O’Regan, D., Saierli, O., Tabassum, A.: Hyers-Ulam stability and discrete dichotomy for difference periodic systems. Bull. Sci. Math. 140, 908-934 (2016) · Zbl 1353.39016
[32] Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970) · Zbl 0241.65046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.