×

The numerical simulation of the tempered fractional Black-Scholes equation for European double barrier option. (English) Zbl 1465.91131

Summary: In recent years, the Finite Moment Log Stable (FMLS), KoBoL and CGMY models, which follow a jump process or a Lévy process, have become the most popular modeling frameworks in the financial field because they can capture some of the important characteristics in the dynamic process of stock price changes, such as large movements or jumps over small time steps. In this paper, we consider the numerical simulation of these three models. We construct a discrete implicit numerical scheme with second order accuracy, and provide a stability and convergence analysis of the numerical scheme. Furthermore, a fast bi-conjugate gradient stabilized method (FBi-CGSTAB) is used to reduce the storage space from \(O(M^2)\) to \(O(M)\) and the computational cost from \(O(M^3)\) to \(O(M\log M)\) per iteration, where \(M\) is the number of space grid points. Some numerical examples are chosen in order to demonstrate the accuracy and efficiency of the proposed method and technique. Finally, as an application, we use the above numerical technique to price a European double-knock-out barrier option, and then the characteristics of the three fractional Black-Scholes (B-S) models are analyzed through comparison with the classical B-S model.

MSC:

91G60 Numerical methods (including Monte Carlo methods)
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
91G20 Derivative securities (option pricing, hedging, etc.)
Full Text: DOI

References:

[1] Black, F.; choles, M. S., The pricing of options and corporate liabilities, J. Political Econ., 81, 637-654 (1973) · Zbl 1092.91524
[2] Robert, C. M., Theory of rational option pricing, Bell J. Econ. Manag. Sci.(The RAND Corporation), 4, 1, 141-183 (1973) · Zbl 1257.91043
[3] Amster, P.; Averbuj, C. G.; Mariani, M. C.; Rial, D., A BlackCSholes option pricing model with transaction costs, J. Math. Anal. Appl., 2, 303, 688-695 (2005) · Zbl 1114.91044
[4] Davis, M. H.A.; Panas, V. G.; Zariphopoulou, T., Eouropean option pricing with transaction costs, SIAM J. Control Optim., 2, 31, 470-493 (1993) · Zbl 0779.90011
[5] Kou, S. G., A jump-diffusion model for option, Manag. Sci., 8, 48, 1086-1101 (2002) · Zbl 1216.91039
[6] Merton, R. C., Option pricing when underlying stock returns are discontinuous, J. Financ. Econ., 1-2, 3, 125-144 (1976) · Zbl 1131.91344
[7] Hull, C.; White, A. D., The pricing of options on assets with stochastic volatilities, J. Financ., 42, 281-300 (1987)
[8] Louis, O. S., Pricing stock options in a jump-diffusion model with stochastic volatility and interest rates: applications of fourier inversion methods, Math. Financ., 4, 7, 413-426 (1997) · Zbl 1020.91030
[9] Mandelbrot, B., The variation of certain speculative prices, J. Bus. (University of Chicago), 36, 394-419 (1963)
[10] Koponen, I., Analytic approach to the problem of convergence of truncated Lvy flights towards the Gaussian stochastic process, Phys. Rev. E, 52, 1197-1199 (1995)
[11] Boyarchenko, S.; Levendorskiǐ, S., Non-Gaussian MertonCBlackCScholes Theory, vol. 9 (2002), World Scientific: World Scientific Singapore · Zbl 0997.91031
[12] Carr, P.; Geman, H.; Madan, D. B.; Yor, M., Stochastic volatility for Lévy processes, Math. Financ., 13, 345-382 (2003) · Zbl 1092.91022
[13] Carr, P.; Wu, L., The finite moment logstable process and option pricing, J. Financ. LVIII, 2, 753-777 (2003)
[14] Carpinterj, A.; Mainardi, F., Fractals and Fractional Calculus in Continuum Mechanics (1997), Springer-Verlag: Springer-Verlag New York · Zbl 0917.73004
[15] Liu, F.; Anh, V.; Turner, I., Numerical solution of the space fractional Fokker-Planck equation, J. Comput. Appl. Math., 166, 209-219 (2004) · Zbl 1036.82019
[16] Mandelbrot, B. B., The Fractal Geometry of Nature (1982), W H Freeman: W H Freeman New York · Zbl 0504.28001
[17] Gorenflo, R.; Mainardi, F.; Moretti, D.; Pagnini, G.; Paradisi, P., Discrete random walk models for space-time fractional diffusion, Chem. Phys., 284, 521-541 (2002)
[18] Liu, F.; Zhuang, P.; Turner, I.; Anh, V.; Burrage, K., A semi-alternating direction method for a 2-d fractional Fitzhugh-Nagumo monodomain model on an approximate irregular domain, J. Comput. Phys., 293, 252-263 (2015) · Zbl 1349.65316
[19] Podlubny, I., Fractional Differential Equations (1999), Academic Press · Zbl 0918.34010
[20] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional integrals and derivatives, Theory and Applications (Translation from the Russian) (1993), Gordon and Breach: Gordon and Breach Amsterdam · Zbl 0818.26003
[21] Zhang, H.; Liu, F.; Anh, V., Numerical approximation of Lévy-Feller diffusion equation and its probability interpretation, J. Comput. Appl. Math., 206, 1098-1115 (2007) · Zbl 1125.26014
[22] Wyss, W., The fractional Black-Scholes equation, Fract. Calc. Appl. Anal. Theory Appl., 3, 1, 51-61 (2000) · Zbl 1058.91045
[23] Cartea, A.; del Castillo-Negrete, D., Fractional diffusion models of option prices in markets with jumps, Physica A, 2, 374, 749-763 (2007)
[24] Jumarie, G., Stock exchange fractional dynamics defined as fractional exponential growth driven by (usual) Gaussian white noise. Application to fractional Black-Scholes equations, Insur.: Math. Econ., 1, 42, 271-287 (2008) · Zbl 1141.91455
[25] Jumarie, G., Derivation and solutions of some fractional Black Scholes equations in coarse-grained space and time. Application to Mertons optimal portfolio, Comput. Math. Appl., 3, 59, 1142-1164 (2010) · Zbl 1189.91230
[26] Li, W., The numerical solution of fractional order equation in financial models and its application (2009), Hangzhou university of electronic science and technology, Master’s thesis
[27] Liang, J.-R.; Wang, J.; Zhang, W.-J.; Qiu, W.-Y.; Ren, F.-Y., Option pricing of a bi-fractional Black-Merton-Scholes model with the Hurst exponent H in \([\frac{1}{2}, 1]\), Appl. Math. Lett., 23, 859-863 (2010) · Zbl 1189.91210
[28] Chen, W., Numerical methods for fractional black-scholes equations and variational inequalities governing option pricing (2013), The University of Western Australia, PHD thesis
[29] Kumar, S.; Yildirim, A., Analytical solution of fractional Black-Scholes European option pricing equation by using Laplace transform, J. Fract. Calc. Appl., 2, 8, 1-9 (2012) · Zbl 1488.91167
[30] Elbeleze, A. A.; KJlJçman, A.; Taib, B. M., Homotopy perturbation method for fractional Black-Scholes European option pricing equations using Sumudu transform, Math. Probl. Eng., 2013 (2013), 7 pages · Zbl 1299.91179
[31] Chen, W.; Xu, X.; Zhu, S.-p., Analytically pricing European-style options under the modified Black-Scholes equation with a spatial-fractional derivative, Q. Appl. Math., 72, 3, 597-611 (2014) · Zbl 1299.91139
[32] Marom, O.; Momoniat, E., A comparison of numerical solution of fractional diffusion models in finance, Nonlinear Anal.: Real World Appl., 10, 3435-3442 (2009) · Zbl 1180.91308
[33] Hariharan, G., An efficient wavelet based approximation method to time fractional black-scholes european option pricing problem arising in financial market, Appl. Math. Sci., 69, 7, 3445-3456 (2013)
[34] Song, L.; Wang, W., Solution of the fractional Black-Scholes option pricing model by finite difference method, Abstr. Appl. Anal., 2013 (2013), 10 pages · Zbl 1291.91235
[35] Zhang, X.; Sun, S.; Wu, L., \(θ\)-difference numerical method for solving time-fractional Black-Scholes equation, Highlights of Science paper online, China science and technology papers, 7, 13, 1287-1295 (2014)
[36] Cao, J.; Li, C.; Chen, Y. Q., On tempered and substantial fractional calculus, Mechatronic and Embedded Systems and Applications (MESA), 2014 IEEE/ASME 10th International Conference on., 1-6 (2014), IEEE
[37] Meerschaert, M. M.; Zhang, Y.; Baeumer, B., Tempered anomalous diffusions in heterogeneous systems, Geophys. Res. Lett., 35 (2008)
[38] Liu, F.; Zhuang, P.; Anh, V.; Turner, I.; Burrage, K., Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation, Appl. Math. Comput., 191, 12-20 (2007) · Zbl 1193.76093
[39] Mark, M.; Tadjeran, C., Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math., 172, 65-77 (2004) · Zbl 1126.76346
[40] Zhang, F.; Liu, F.; Anh, V., Galerkin finite element approximation of symmetric space-fractional partial differential equations, Appl. Math. Comput., 217, 6, 2534-2545 (2010) · Zbl 1206.65234
[41] Zhang, H.; Liu, F.; Zhuang, P.; Turner, I.; Anh, V., Numerical analysis of a new space-time variable fractional order advection-dispersion equation, Appl. Math. Comput., 242, 541-550 (2014) · Zbl 1334.65143
[42] Zheng, M.; Liu, F.; Turner, I.; Anh, V., A novel high order space-time spectral method for the time-fractional Fokker-Planck equation, SIAM J. Sci. Comput., 37, 2, A701-A724 (2015) · Zbl 1320.82052
[43] Zhuang, P.; Liu, F.; Anh, V.; Turner, I., New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation, SIAM J. Numer. Anal., 46, 2, 1079-1095 (2008) · Zbl 1173.26006
[44] Zhuang, P.; Liu, F.; Anh, V.; Turner, I., Numerical methods f or the variable-order fractional advection-diffusion with a nonlinear source term, SIAM J. Numer. Anal., 47, 3, 1760-1781 (2009) · Zbl 1204.26013
[45] Li, C.; Deng, W., High order schemes for the tempered fractional diffusion equations, Advances in Computational Mathematics, 1-30 (2015)
[46] Sabzikar, F.; Mark, M. M.; Chen, J., Tempered fractional calculus, J. Comput. Phys., 293, 14-28 (2015) · Zbl 1349.26017
[47] Wang, H.; Basu, T. S., A fast finite difference method for two-dimensional space-fractional diffusion equations, SIAM J. Sci. Comput., 34, 2444-2458 (2012) · Zbl 1256.35194
[48] Chen, S.; Liu, F.; Jiang, X.; Turner, I.; Anh, V., A fast semi-implicit difference method for a nonlinear two-sided space-fractional diffusion equation with variable diffusivity coefficients, Appl. Math. Comput., 257, 591-601 (2015) · Zbl 1339.65104
[49] Quarteroni, A.; Sacco, R.; Saleri, F., Numerical Mathematics (2007), Springer · Zbl 0913.65002
[50] Quarteroni, A.; Valli, A., Numerial Approximation of Partial Differential Equations (1997), Springer
[51] Van der Vorst, H. A., Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13, 2, 631-644 (1992) · Zbl 0761.65023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.