×

High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations. II. (English) Zbl 1325.65121

Summary: In this paper, we first establish a high-order numerical algorithm for \(\alpha\)-th \((0 < \alpha < 1)\) order Caputo derivative of a given function \(f(t)\), where the convergence rate is \((4 - \alpha)\)-th order. Then by using this new formula, an improved difference scheme with high order accuracy in time to solve Caputo-type fractional advection-diffusion equation with Dirichlet boundary conditions is constructed. Finally, numerical examples are carried out to confirm the efficiency of the constructed algorithm.
For Part I, see [C. Li, R. Wu and H. Ding, “High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations”, Commun. Appl. Ind. Math. 6, No. 2, Article ID 536, electronic only (2014; doi:10.1685/journal.caim.536)].

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
26A33 Fractional derivatives and integrals

Software:

ma2dfc
Full Text: DOI

References:

[1] A. A. Alikhanov, A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280 (2015), 424-438.; · Zbl 1349.65261
[2] J. X. Cao, C. P. Li, Finite difference scheme for the time-space fractional diffusion equations. Centr. Eur. J. Phys. 11, No 10 (2013), 1440-1456.;
[3] C. Chen, F. Liu, I. Turner, V. Anh, A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 227, No 2 (2007), 886-897.; · Zbl 1165.65053
[4] J. X. Cao, C. P. Li, Y. Q. Chen, Compact differencemethod for solving the fractional reaction-subdiffusion equation with neumann boundary value condition. Int. J. Comput. Math. 92, No 1 (2015), 167-180.; · Zbl 1308.65140
[5] G. Gao, Z. Sun, H. Zhang, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259 (2014), 33-50.; · Zbl 1349.65088
[6] B. Jin, R. Lazarov, Z. Zhou, An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal.; First Publ. online: Jan. 24, 2015; doi: 10.1093/imanum/dru063, 2015.; · Zbl 1336.65150
[7] I. Karatay, N. Kale, S. R. Bayramoglu, A new difference scheme for time fractional heat equations based on the Crank-Nicholson method. Fract. Calc. Appl. Anal. 16, No 4 (2013), 892-910; DOI: 10.2478/s13540-013-0055-2; http://www.degruyter.com/view/j/fca.2013.16.issue-4/s13540-013-0055-2/s13540-013-0055-2.xml; http://link.springer.com/article/10.2478/s13540-013-0055-2.; · Zbl 1312.65136
[8] C. P. Li, R. F. Wu, H. F. Ding, High-order approximation to Caputo derivative and Caputo-type advection-diffusion equation (I). Commun. Appl. Ind. Math. 7, No 1 (2015), In press.;
[9] C. Lubich, Discretized fractional calculus. SIAM J. Math. Anal. 17, No 3 (1986), 704-719.; · Zbl 0624.65015
[10] C. P. Li, A. Chen, J. J. Ye, Numerical approaches to fractional calculus and fractional ordinary differential equation. J. Comput. Phys. 230, No 9 (2011), 3352-3368.; · Zbl 1218.65070
[11] K. B. Oldham, J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic Press, New York, 2006.; · Zbl 0292.26011
[12] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego, 1999.; · Zbl 0924.34008
[13] I. Podlubny, A. Chechkin, T. Skovranek, Y. Chen, B. M. Vinagre Jara, Matrix approach to discrete fractional calculus II: Partial fractional differential equations. J. Comput. Phys. 228, No 8 (2009), 3137-3153.; · Zbl 1160.65308
[14] E. Sousa, Numerical approximations for fractional diffusion equations via splines. Comput. Math. Appl. 62, No 3 (2011), 938-944.; · Zbl 1228.65153
[15] E. Sousa, How to approximate the fractional derivative of order 1 < α ≤ 2. Int. J. Bifurcation Chaos. 22, No 4 (2012).; · Zbl 1258.26006
[16] F. H. Zeng, C. P. Li, F. W. Liu, I. Turner, The use of finite difference/ element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35, No 6 (2013), A2976-A3000.; · Zbl 1292.65096
[17] F. H. Zeng, C. P. Li, F. Liu, I. Turner, Numerical algorithms for timefractional subdiffusion equation with second-order accuracy. SIAM. J. Sci. Comput. 37, No 1 (2015), A55-A78.; · Zbl 1334.65162
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.