×

Stability issues in two-dimensional mathematical models of plasma equilibrium in magnetic Galathea traps. (English. Russian original) Zbl 1471.76035

Differ. Equ. 57, No. 7, 835-847 (2021); translation from Differ. Uravn. 57, No. 7, 867-879 (2021).
Summary: Galathea traps for confining plasma in a magnetic field created by current-carrying conductors immersed in the plasma volume constitute a promising class of objects for development in the field of controlled thermonuclear fusion. After describing the main properties and quantitative characteristics of the traps, the central problem is to study the stability of equilibrium magnetoplasma configurations. Mathematical modeling and calculations performed in terms of the differential equations of magnetohydrodynamics play an essential role here. These equations are described using the example of a toroidal “Galathea belt” trap straightened into a cylinder. The article presents its plasmastatic model and several approaches to studying the stability of configurations: the convergence of iterative methods for establishing equilibrium in two-dimensional models, a brief survey of the research into the magnetohydrodynamic stability of one-dimensional configurations surrounding a straight current-carrying conductor, and a rigorous study of the stability of configurations with respect to two-dimensional perturbations in the linear approximation. Stability criteria and their relationship to each other are obtained numerically in various approximations. Ways of generalizing the results to three-dimensional perturbations are indicated.

MSC:

76E25 Stability and instability of magnetohydrodynamic and electrohydrodynamic flows
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
76M99 Basic methods in fluid mechanics
Full Text: DOI

References:

[1] Morozov, A. I., Galathea—plasma confinement systems in which the conductors are immersed in the plasma, Sov. J. Plasma Phys., 18, 3, 159-165 (1992)
[2] Morozov, A. I.; Pustovitov, V. D., Stellarator with levitating windings, Sov. J. Plasma Phys., 17, 740 (1991)
[3] Morozov, A. I.; Frank, A. G., Galateya toroidal multipole trap with azimuthal current, Plasma Phys. Rep., 20, 879-886 (1994)
[4] Morozov, A. I.; Bugrova, A. I.; Bishaev, A. M.; Lipatov, A. S.; Kozintseva, M. V., Plasma parameters in the upgraded Trimyx-M Galathea, Tech. Phys., 52, 12, 1546-1551 (2007) · doi:10.1134/S1063784207120031
[5] Brushlinskii, K. V.; Zueva, N. M.; Mikhailova, M. S.; Morozov, A. I.; Pustovitov, V. D.; Tuzova, N. B., Numerical simulation for straight helical sheaths with conductors immersed in plasma, Plasma Phys. Rep., 20, 3, 257-264 (1994)
[6] Brushlinskii, K. V.; Ignatov, P. A., A plasmastatic model of the Galathea-belt magnetic trap, Comput. Math. Math. Phys., 50, 12, 2071-2081 (2010) · Zbl 1224.82021 · doi:10.1134/S0965542510120092
[7] Brushlinskii, K. V.; Kondrat’ev, I. A., Comparative analysis of plasma equilibrium computations in toroidal and cylindrical magnetic traps, Math. Model. Comput. Simul., 11, 1, 122-132 (2019) · doi:10.1134/S207004821901006X
[8] Tao, B.; Jin, X.; Li, Z.; Tong, W., Equilibrium configuration reconstruction of multipole Galatea magnetic trap based on magnetic measurement, IEEE Trans. Plasma Sci., 47, 7, 3114-3123 (2019) · doi:10.1109/TPS.2019.2916179
[9] Morozov, A. I.; Savel’ev, V. V., On Galateas—magnetic traps with plasma-embedded conductors, Phys.-Usp., 41, 11, 1049-1089 (1998) · doi:10.1070/PU1998v041n11ABEH000501
[10] Brushlinskii, K. V., Matematicheskie i vychislitel’nye zadachi magnitnoi gazodinamiki (Mathematical and Computational Problem of Magnetohydrodynamics) (2009), Moscow: BINOM. Lab. Znanii, Moscow
[11] Brushlinskii, K. V., Matematicheskie osnovy vychislitel’noi mekhaniki zhidkosti, gaza i plazmy (Mathematical Foundations of Computational Mechanics of Fluid, Gas, and Plasma) (2017), Dolgoprudnyi: Intellekt, Dolgoprudnyi
[12] Shafranov, V. D., On magnetohydrodynamic equilibrium configurations, Sov. Phys. JETP, 6, 545-554 (1958) · Zbl 0081.21801
[13] Grad, H.; Rubin, H., Hydrodynamic equilibria and force-free fields, Proc. 2nd U. N. Int. Conf. Peaceful Uses At. Energy. Geneva, 31, 190-197 (1958)
[14] Shafranov, V.D., Plasma equilibrium in a magnetic field, in Rev. Plasma Phys., Leontovich, M.A., Ed., New York, 1966, no. 2, pp. 103-152.
[15] Kadomtsev, B.B., Hydromagnetic stability of a plasma, in Rev. Plasma Phys., Leontovich, M.A., Ed., New York, 1966, no. 2, pp. 153-206.
[16] Solov’ev, L. S., Hydromagnetic stability of closed plasma configurations, Voprosy teorii plazmy. Vyp. 6 (Plasma Theory Issues. Issue 2) (1972), Moscow: Atomizdat, Moscow
[17] Bateman, G., MHD Instability (1979), Cambridge, MA-London: The MIT Press, Cambridge, MA-London
[18] Medvedev, S. Yu.; Martynov, A. A.; Drozdov, V. V.; Ivanov, A. A.; Poshekhonov, Yu. Yu.; Konovalov, S. V.; Villard, L., MHD stability and energy principle for two-dimensional equilibria without assumption of nested magnetic surfaces, Plasma Phys. Rep., 45, 2, 108-120 (2019) · doi:10.1134/S1063780X19010112
[19] Brushlinskii, K. V., Two approaches to the stability problem for plasma equilibrium in a cylinder, J. Appl. Math. Mech., 65, 2, 229-236 (2001) · Zbl 1010.76522 · doi:10.1016/S0021-8928(01)00026-0
[20] Brushlinskii, K. V.; Krivtsov, S. A.; Stepin, E. V., On the stability of plasma equilibrium in the neighborhood of a straight current conductor, Comput. Math. Math. Phys., 60, 4, 686-696 (2020) · Zbl 1454.82037 · doi:10.1134/S0965542520040065
[21] Brushlinskii, K. V.; Stepin, E. V., Mathematical models of equilibrium configurations of plasma surrounding current-carrying conductors, Differ. Equations, 56, 7, 872-881 (2020) · Zbl 1447.76044 · doi:10.1134/S001226612007006X
[22] Brushlinskii, K. V.; Stepin, E. V., Mathematical model and stability investigation of plasma equilibrium around a current-carrying conductor, J. Phys.: Conf. Ser., 1686, 012030 (2020)
[23] Brushlinskii, K. V.; Stepin, E. V., Plasma equilibrium and stability in a current-carrying conductor vicinity, J. Phys.: Conf. Ser., 1640, 012018 (2020)
[24] Peaceman, D. W.; Rachford, H. H., The numerical solution of parabolic and elliptic differential equations, J. Soc. Ind. Appl. Math., 3, 1, 28-42 (1955) · Zbl 0067.35801 · doi:10.1137/0103003
[25] Douglas, J., On the numerical integration of \(\partial^2 u /\partial x^2+\partial^2 u /\partial y^2=\partial u /\partial t\) by implicit method, J. Soc. Ind. Appl. Math., 3, 1, 42-65 (1955) · Zbl 0067.35802 · doi:10.1137/0103004
[26] Arsenin, V. Ya., Metody matematicheskoi fiziki i spetsial’nye funktsii (Methods of Mathematical Physics and Special Functions) (1984), Moscow: Nauka, Moscow · Zbl 0592.35001
[27] Vedenov, A. A.; Velikhov, E. P.; Sagdeev, R. Z., Stability of plasma, Sov. Phys. Usp., 4, 2, 332-369 (1961) · doi:10.1070/PU1961v004n02ABEH003341
[28] Bernstein, I. B.; Frieman, E. A.; Kruskal, M. D.; Kulsrud, R. M., Energy principle for the hydromagnetic stability problem, Proc. R. Soc., 244, 17-50 (1958) · Zbl 0081.21704
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.