Skip to main content
Log in

MHD Stability and Energy Principle for Two-Dimensional Equilibria without Assumption of Nested Magnetic Surfaces

  • TOKAMAKS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Abandoning the assumption of nested magnetic surfaces in tokamak plasma expands the field of research and opens up new approaches for both theoretical and experimental plasma physics. The computer code KINX for calculations of the ideal MHD stability was developed for studies of doublet plasmas with two magnetic axes and using block-structured grids in each subdomain with nested magnetic surfaces. Then, the MHD_NX code on unstructured grids was developed to calculate the stability of two-dimensional equilibria with an arbitrary topology of magnetic surfaces. The study of equilibrium and stability of equilibrium configurations with toroidal current density reversal and axisymmetric n = 0 islands, which are associated with internal transport barrier and low current density at the magnetic axis, as well as with the operation of tokamaks in the alternating current regime, leads to more general issues of MHD stability of two-dimensional solutions of the Grad−Shafranov equations with islands under other types of symmetry—chain of islands in helical symmetry and cylindrically symmetric m = 0 islands in configurations with the longitudinal field reversal. New ideal MHD unstable modes have been discovered for various types of two-dimensional island configurations. The energy principle with MHD-compatible boundary conditions at open magnetic field lines is necessary for the self-consistent stability analysis of divertor configurations in tokamaks with a finite current density at the separatrix, taking into account the plasma outside the separatrix. Several codes have been developed for calculations of plasma equilibrium and stability, taking into account the influence of currents outside the separatrix, which are ready for integration with other codes for edge plasma modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. A. I. Morozov and L. S. Solov’ev, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1966), Vol. 2, p. 201.

    Google Scholar 

  2. V. D. Pustovitov, Nucl. Fusion 30, 1079 (1990).

    Article  Google Scholar 

  3. K. V. Brushlinskii and A. S. Goldich, Diff. Equat. 52, 845 (2016).

    Article  Google Scholar 

  4. L. Degtyarev, A. Martynov, S. Medvedev, F. Troyon, L. Villard, and R. Gruber, Comput. Phys. Commun. 103, 10 (1997).

    Article  ADS  Google Scholar 

  5. A. A. Martynov, S. Yu. Medvedev, and L. Villard, Phys. Rev. Lett. 91, 85004 (2003).

    Article  ADS  Google Scholar 

  6. Y. Hu, Phys. Plasmas 15, 022505 (2008).

    Article  ADS  Google Scholar 

  7. W. Guo, S. Wang, and J. Li, Plasma Sci. Technol. 12, 657 (2010).

    Article  ADS  Google Scholar 

  8. T. Fujita, Nucl. Fusion 50, 113001 (2010).

    Article  ADS  Google Scholar 

  9. S. Yu. Medvedev, A. A. Martynov, and L. Villard, in Proceedings of the 35th EPS Conference on Plasma Physics, Hersonissos, 2008, ECA 32D, P2.063 (2008).

  10. S. Yu. Medvedev, A. A. Martynov, V. V. Drozdov, A. A. Ivanov, and Yu. Yu. Poshekhonov, Plasma Phys. Controlled Fusion 59, 025018 (2017).

    Article  ADS  Google Scholar 

  11. I. B. Bernstein, E. A. Frieman, M. D. Kruskal, and R. M. Kulsrud, Proc. Roy. Soc. A 244, 17 (1958).

    ADS  Google Scholar 

  12. B. B. Kadomtsev, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1966), Vol. 2, p. 153.

  13. H. R. Strauss, Phys. Plasmas 21, 032506 (2014).

    Article  ADS  Google Scholar 

  14. S. Yu. Medvedev, A. A. Martynov, and L. Villard, in Proceedings of the 33rd EPS Conference on Plasma Physics, Rome, 2006, ECA 30I, P1.167 (2006).

  15. S. Yu. Medvedev, A. A. Martynov, and L. Villard, in Proceedings of the 34th EPS Conference on Plasma Physics, Warsaw, 2007, ECA 31F, P4.087 (2007).

  16. S. Yu. Medvedev, A. A. Martynov, and L. Villard, in Proceedings of the 36th EPS Conference on Plasma Physics, Sofia, 2009, ECA 33E, P1.130 (2009).

  17. S. Yu. Medvedev, A. A. Martynov, and L. Villard, in Proceedings of the 41st EPS Conference. on Plasma Physics, Berlin, 2014, ECA 38F, P4.042 (2014).

  18. S. Yu. Medvedev, A. A. Martynov, and L. Villard, in Proceedings of the 39th EPS Conference on Plasma Physics, Stockholm, 2012, ECA 36F, P1.082 (2012).

  19. S. Yu. Medvedev, A. A. Martynov, and L. Villard, in Proceedings of the 40th EPS Conference on Plasma Physics, Espoo, 2013, ECA 37D, P5.145 (2013).

  20. A. A. Martynov and S. Yu. Medvedev, in Proceedings of the 44th EPS Conference on Plasma Physics and Controlled Fusion, Belfast, 2017, ECA 41F, P4.135 (2017).

  21. S. Yu. Medvedev, A. A. Martynov, V. V. Drozdov, A. A. Ivanov, Yu. Yu. Poshekhonov, S. V. Konovalov, and L. Villard, in Proceedings of the 44th EPS Conference on Plasma Physics and Controlled Fusion, Belfast, 2017, ECA 41F, O4.125 (2017).

  22. A. Loarte, F. Liu, G. T. A. Huysmans, A. S. Kukushkin, and R. A. Pitts, J. Nucl. Mater. 463, 401 (2014).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation (grant no. 16-11-10278).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Medvedev.

Additional information

The article was translated by the authors.

APPENDIX

APPENDIX

Following the classical work [11], where the energy principle for the problem of ideal MHD stability is formulated, we show how the parts of the potential energy functional are transformed in the case when the boundary \({{S}_{p}}\) between the plasma and the vacuum includes the divertor plates \({{S}_{d}}\). To do this, we establish a relation between the displacement \({\mathbf{\xi }}\) and the vector of the perturbed electric field \({\mathbf{e}}\). From the general condition at the plasma–vacuum interface \({\mathbf{n}} \times \left\langle {\mathbf{E}} \right\rangle = {\mathbf{n}} \cdot {\mathbf{v}}\left\langle {\mathbf{B}} \right\rangle \) (Eq. (2.10) in [11]) for a perfectly conducting plasma, it follows that

$${\mathbf{n}} \times {{{\mathbf{e}}}_{v}} = - {\mathbf{n}} \times ({\mathbf{\xi }} \times {{{\mathbf{B}}}_{v}}){\text{,}}$$
((A.1))

where the subscript \(v\) indicates the value from the vacuum side. On the part of the boundary coinciding with the equilibrium magnetic surface, \({\mathbf{n}} \times {{{\mathbf{e}}}_{v}} = ({\mathbf{n}} \cdot {\mathbf{\xi }}){{{\mathbf{B}}}_{v}}\) follows from Eq. (A.1). On the divertor plates, we have boundary condition (3) (\({\mathbf{n}} \cdot {\mathbf{\xi }} = 0\)) and equality (A.1). Taking into account these relations and the linearized condition of the total pressure continuous across plasma vacuum interface (Eq. (2.32) in [11]) on \({{S}_{p}}{\backslash }{{S}_{d}}\), the surface term (see Eq. (3.14) in [11]) can be written as

$$\begin{gathered} W - {{W}_{F}} = - \frac{1}{2}\int\limits_{{{S}_{p}}} {\left\{ {{\mathbf{n}} \times ({\mathbf{\xi }} \times {\mathbf{B}}) \cdot \delta {\mathbf{B}}} \right.} \\ + \;\left. {({\mathbf{n}} \cdot {\mathbf{\xi }})(\Gamma p\nabla \cdot {\mathbf{\xi }} + {\mathbf{\xi }} \cdot \nabla p)} \right\}dS \\ = \;{{W}_{S}} - \frac{1}{2}\int\limits_{{{S}_{p}}\backslash {{S}_{d}}} {{\mathbf{n}} \times {{{\mathbf{e}}}_{v}} \cdot \nabla \times {{{\mathbf{e}}}_{v}}dS} \\ + \;\frac{1}{2}\int\limits_{{{S}_{d}}} {{\mathbf{n}} \times {{{\mathbf{e}}}_{v}} \cdot \delta {\mathbf{B}}dS} + \frac{1}{2}\int\limits_{{{S}_{d}}} {({\mathbf{n}} \cdot \left\langle {\mathbf{B}} \right\rangle )({\mathbf{\xi }} \cdot \delta {\mathbf{B}})dS} , \\ \end{gathered} $$
((A.2))

where \({{W}_{S}} = \frac{1}{2}\int_{{{S}_{p}}} {{{{({\mathbf{n}} \cdot {\mathbf{\xi }})}}^{2}}{\mathbf{n}} \cdot \left\langle {\nabla (p + {{B}^{2}}{\text{/}}2)} \right\rangle dS} \) and the angular brackets denote the jump of the corresponding value across the plasma boundary, for example, \(\left\langle {\mathbf{B}} \right\rangle = {{{\mathbf{B}}}_{v}} - {{{\mathbf{B}}}_{p}}\). The last term in Eq. (A.2) is zeroed due to the assumption of continuity of the normal component of the magnetic field through thin divertor plates. The next two terms from the end of Eq. (A.2), after using the Gauss formula and the relations and \(\nabla \times \delta {{{\mathbf{B}}}_{v}} = 0\) in vacuum, give

$$\begin{gathered} - \frac{1}{2}\int\limits_{{{S}_{p}}} {{\mathbf{n}} \times {{{\mathbf{e}}}_{v}} \cdot \nabla \times {{{\mathbf{e}}}_{v}}dS} \\ + \;\frac{1}{2}\int\limits_{{{S}_{d}}} {{\mathbf{n}} \times {{{\mathbf{e}}}_{v}} \cdot (\delta {\mathbf{B}} + \nabla \times {{{\mathbf{e}}}_{v}})dS} = {{W}_{V}} + {{W}_{d}}, \\ {{W}_{V}} = \frac{1}{2}{{\int\limits_{{{V}_{v}}} {\left| {\nabla \times {{{\mathbf{e}}}_{v}}} \right|} }^{2}}dV, \\ {{W}_{d}} = \frac{1}{2}\int\limits_{{{S}_{d}}} {{{{\mathbf{e}}}_{v}} \cdot {\mathbf{n}} \times \left\langle {\delta {\mathbf{B}}} \right\rangle dS} , \\ \end{gathered} $$
((A.3))

coinciding with expressions (2) and (4). In the absence of an equilibrium surface current, the integral \({{W}_{S}}\) is zeroed and relation (A.1) is reduced to the continuity of the tangential component of the perturbed electric field, \(\left\langle {{\mathbf{e}} \times {\mathbf{n}}} \right\rangle = 0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medvedev, S.Y., Martynov, A.A., Drozdov, V.V. et al. MHD Stability and Energy Principle for Two-Dimensional Equilibria without Assumption of Nested Magnetic Surfaces. Plasma Phys. Rep. 45, 108–120 (2019). https://doi.org/10.1134/S1063780X19010112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X19010112

Navigation