×

Mathematical models of equilibrium configurations of plasma surrounding current-carrying conductors. (English. Russian original) Zbl 1447.76044

Differ. Equ. 56, No. 7, 872-881 (2020); translation from Differ. Uravn. 56, No. 7, 901-909 (2020).
Summary: This work belongs to the field of mathematical modeling and numerical studies of equilibrium configurations of plasma, magnetic field, and electric current in Galathea traps with current-carrying conductors immersed in a plasma volume. Models of permissible configurations in the annular neighborhood of a straight conductor that are not in contact with its surface are constructed and investigated. Such configurations can be considered as a common basic element of any Galathea trap. The dependence of the configurations on the position of the outer boundary of the neighborhood is considered, and the MHD stability of equilibrium configurations with respect to three-dimensional perturbations in the linear approximation is studied. Quantitative laws governing the restrictions on the plasma pressure are found that ensure the existence and stability of the configurations under consideration.

MSC:

76X05 Ionized gas flow in electromagnetic fields; plasmic flow
76E25 Stability and instability of magnetohydrodynamic and electrohydrodynamic flows
78A37 Ion traps
Full Text: DOI

References:

[1] Dnestrovskii, Yu. N.; Kostomarov, D. P., Matematicheskoe modelirovanie plazmy (Mathematical Modeling of Plasma) (1982), Moscow: Nauka, Moscow
[2] Artsimovich, L. A., Upravlyaemye termoyadernye reaktsii (Controlled Thermonuclear Reactions) (1961), Moscow: Fizmatgiz, Moscow
[3] Morozov, A. I., Galathea-plasma confinement systems in which the conductors are immersed in the plasma, Sov. J. Plasma Phys., 18, 3, 159-165 (1992)
[4] Morozov, A. I.; Savel’ev, V. V., On Galateas—magnetic traps with plasma-embedded conductors, Phys.-Usp., 41, 11, 1049-1089 (1998)
[5] Morozov, A. I.; Pustovitov, V. D., Stellarator with levitating windings, Sov. J. Plasma Phys., 17, 740 (1991)
[6] Brushlinskii, K. V.; Zueva, N. M.; Mikhailova, M. S.; Petrovskaya, N. B., On the uniqueness and stability of solutions of two-dimensional plasmostatic problems, Mat. Model., 7, 4, 73-86 (1995) · Zbl 0974.76617
[7] Morozov, A. I.; Frank, A. G., Galateya toroidal multipole trap with azimuthal current, Plasma Phys. Rep., 20, 879-886 (1994)
[8] Brushlinskii, K. V.; Goldich, A. S., Mathematical model of the Galathea-belt toroidal magnetic trap, Differ. Equations, 52, 7, 845-854 (2016) · Zbl 1355.82045
[9] Frank, A. G.; Kyrie, N. P.; Markov, V. S., Experiments on the formation of Galatea-belt magnetoplasma configurations, Plasma Phys. Rep., 45, 1, 28-32 (2019)
[10] Morozov, A. I.; Bugrova, A. I.; Bishaev, A. M.; Lipatov, A. S.; Kozintseva, M. V., Plasma parameters in the upgraded Trimyx-M Galathea, Tech. Phys., 52, 12, 1546-1551 (2007)
[11] Medvedev, S.Yu., Martynov, A.A., Savel’ev, V.V., and Kozlov, A.N., Calculations of ideal MHD-stability in Trimyx Galathea-trap, Preprint of Keldysh Inst. Appl. Math, Russ. Acad. Sci., Moscow, 2018, no. 253.
[12] Tao, B.; Jin, X.; Li, Z.; Tong, W., Equilibrium configuration reconstruction of multipole Galatea magnetic trap based on magnetic measurement, IEEE Trans. Plasma Sci., 47, 7, 3114-3123 (2019)
[13] Shafranov, V. D., On magnetohydrodynamic equilibrium configurations, Sov. Phys. JETP, 6, 545-554 (1958) · Zbl 0081.21801
[14] Grad, H. and Rubin H., Hydrodynamic equilibria and force-free fields, inProc. 2nd United Nations Int. Conf. Peaceful Uses At. Energy, Geneva, 1958; New York, 1959; vol. 31. pp. 190-197.
[15] Brushlinskii, K. V., Matematicheskie i vychislitel’nye zadachi magnitnoi gazodinamiki (Mathematical and Computational Problems of Magnetic Gas Dynamics) (2009), Moscow: Binom, Moscow
[16] Brushlinskii, K. V., Matematicheskie osnovy vychislitel’noi mekhaniki zhidkosti, gaza i plazmy (Mathematical Basics of Computational Mechanics of Fluid, Gas, and Plasma) (2017), Moscow: Intellekt, Moscow
[17] Dudnikova, G. I.; Morozov, A. I.; Fedoruk, M. P., Numerical simulation of straight belt-type Galatheas, Plasma Phys. Rep., 23, 5, 357-366 (1997)
[18] Brushlinskii, K. V.; Chmykhova, N. A., Plasma equilibrium in the magnetic field of Galatea traps, Math. Models Comput. Simul., 3, 9-17 (2010)
[19] Brushlinskii, K. V.; Chmykhova, N. A., Numerical model of the formation of plasma quasi-equilibrium in the magnetic field of Galathea traps, Vestn. Nats. Issled. Yad. Univ. MIFI, 3, 1, 40-52 (2014)
[20] Brushlinskii, K. V., Two approaches to the stability problem for plasma equilibrium in a cylinder, J. Appl. Math. Mech., 65, 2, 229-236 (2001) · Zbl 1010.76522
[21] Shafranov, V.D., Plasma equilibrium in a magnetic field, Rev. Plasma Phys., Leontovich, M.A., Ed., New York, 1966, no. 2, pp. 103-152.
[22] Kadomtsev, B.B. Hydromagnetic stability of a plasma, Rev. Plasma Phys., Leontovich, M.A., Ed., New York, 1966, no. 2, pp. 153-206.
[23] Solov’ev, L.S., Symmetric magnetohydrodynamic flows and helical waves in a circular plasma cylinder, Rev. Plasma Phys., Leontovich, M.A., Ed., New York, 1967, no. 3, pp. 277-325.
[24] Solov’ev, L.S., Hydromagnetic stability of closed plasma configurations,Vopr. Teor. Plazmy, Leontovich, M.A., Ed., Moscow, 1972, no. 6, pp. 210-290.
[25] Brushlinskii, K. V.; Krivtsov, S. A.; Stepin, E. V., On the stability of plasma equilibrium in the neighborhood of a straight current conductor, Comput. Math. Math. Phys., 60, 4, 686-696 (2020) · Zbl 1454.82037
[26] Bateman, G., MHD Instabilities (1980), Cambridge, MA: MIT Press, Cambridge, MA
[27] Gerlakh, N.I., Zueva, N.M., and Solov’ev, L.S., Linear theory of helical instability, Magn. Gidrodin., 1978, no. 4, pp. 49-54.
[28] Bernstein, L. B.; Frieman, E. A.; Kruskal, M. D.; Kulsrud, R. M., An energy principle for hydromagnetic stability theory, Proc. R. Soc. London, Ser. A, 224, 17-40 (1958) · Zbl 0081.21704
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.