×

Convergence of nonlocal geometric flows to anisotropic mean curvature motion. (English) Zbl 1471.53072

Summary: We consider nonlocal curvature functionals associated with positive interaction kernels, and we show that local anisotropic mean curvature functionals can be retrieved in a blow-up limit from them. As a consequence, we prove that the viscosity solutions to the rescaled nonlocal geometric flows locally uniformly converge to the viscosity solution to the anisotropic mean curvature motion. The result is achieved by combining a compactness argument and a set-theoretic approach related to the theory of De Giorgi’s barriers for evolution equations.

MSC:

53E10 Flows related to mean curvature
35D40 Viscosity solutions to PDEs
35K93 Quasilinear parabolic equations with mean curvature operator
35R11 Fractional partial differential equations

References:

[1] N. Abatangelo; E. Valdinoci, A notion of nonlocal curvature, Numerical Functional Analysis and Optimization, 35, 793-815 (2014) · Zbl 1296.53021 · doi:10.1080/01630563.2014.901837
[2] O. Alvarez; P. Cardaliaguet; R. Monneau, Existence and uniqueness for dislocation dynamics with nonnegative velocity, Interfaces Free Bound., 7, 415-434 (2005) · Zbl 1099.35148 · doi:10.4171/IFB/131
[3] O. Alvarez; P. Hoch; Y. Le Bouar; R. Monneau, Dislocation dynamics: Short-time existence and uniqueness of the solution, Arch. Ration. Mech. Anal., 181, 449-504 (2006) · Zbl 1158.74335 · doi:10.1007/s00205-006-0418-5
[4] L. Ambrosio, Geometric evolution problems, distance function and viscosity solutions, Springer Berlin Heidelberg, Berlin, Heidelberg, 2000, 5-93. · Zbl 0956.35002
[5] L. Ambrosio; G. De Philippis; L. Martinazzi, \( \Gamma \)-convergence of nonlocal perimeter functionals, Manuscripta Math., 134, 377-403 (2011) · Zbl 1207.49051 · doi:10.1007/s00229-010-0399-4
[6] G. Barles; C. Georgelin, A simple proof of convergence for an approximation scheme for computing motions by mean curvature, SIAM J. Numer. Anal., 32, 484-500 (1995) · Zbl 0831.65138 · doi:10.1137/0732020
[7] G. Barles; O. Ley, Nonlocal first-order Hamilton-Jacobi equations modelling dislocations dynamics, Commun. Partial Differ. Equations, 31, 1191-1208 (2006) · Zbl 1109.35026 · doi:10.1080/03605300500361446
[8] G. Bellettini, Alcuni risultati sulle minime barriere per movimenti geometrici di insiemi, Bollettino UMI, 7, 485-512 (1997) · Zbl 0893.35043
[9] G. Bellettini; M. Novaga, Comparison results between minimal barriers and viscosity solutions for geometric evolutions, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 26, 97-131 (1998) · Zbl 0904.35041
[10] G. Bellettini and M. Novaga, Some aspects of {D}e {G}iorgi’s barriers for geometric evolutions, Springer Berlin Heidelberg, Berlin, Heidelberg, 2000,115-151. · Zbl 0957.35080
[11] G. Bellettini; M. Paolini, Some results on minimal barriers in the sense of {D}e {G}iorgi applied to driven motion by mean curvature, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 19, 43-67 (1995) · Zbl 0944.53039
[12] J. K. Bence, B. Merriman and S. Osher, Diffusion generated motion by mean curvature, Amer. Math. Soc., Providence, RI, 1992.
[13] J. Berendsen and V. Pagliari, On the asymptotic behaviour of nonlocal perimeters, ESAIM Control Optim. Calc. Var., 25 (2019), Paper No. 48, 27pp. · Zbl 1443.49052
[14] J. Bourgain, H. Brezis and P. Mironescu, Another look at {S}obolev spaces, In Optimal control and partial differential equations, IOS, Amsterdam, 2001,439-455. · Zbl 1103.46310
[15] L. A. Caffarelli; P. E. Souganidis, Convergence of nonlocal threshold dynamics approximations to front propagation, Arch. Ration. Mech. Anal., 195, 1-23 (2010) · Zbl 1190.65132 · doi:10.1007/s00205-008-0181-x
[16] L. A. Caffarelli; E. Valdinoci, Uniform estimates and limiting arguments for nonlocal minimal surfaces, Calc. Var. Partial Differential Equations, 41, 203-240 (2011) · Zbl 1357.49143 · doi:10.1007/s00526-010-0359-6
[17] A. Cesaroni; S. Dipierro; M. Novaga; E. Valdinoci, Fattening and nonfattening phenomena for planar nonlocal curvature flows, Math. Ann., 375, 687-736 (2019) · Zbl 1426.53095 · doi:10.1007/s00208-018-1793-6
[18] A. Cesaroni, L. De Luca, M. Novaga and M. Ponsiglione, Stability results for nonlocal geometric evolutions and limit cases for fractional mean curvature flows, Comm. Partial Differential Equations, 2020, arXiv: 2003.02248.
[19] A. Chambolle; M. Morini; M. Ponsiglione, Nonlocal curvature flows, Arch. Ration. Mech. Anal., 218, 1263-1329 (2015) · Zbl 1328.35166 · doi:10.1007/s00205-015-0880-z
[20] A. Chambolle; M. Novaga, Convergence of an algorithm for the anisotropic and crystalline mean curvature flow, SIAM J. Math. Anal., 37, 1978-1987 (2006) · Zbl 1116.35074 · doi:10.1137/050629641
[21] A. Chambolle; M. Novaga; B. Ruffini, Some results on anisotropic fractional mean curvature flows, Interfaces Free Bound, 19, 393-415 (2017) · Zbl 1380.53070 · doi:10.4171/IFB/387
[22] Y.-G. Chen; Y. Giga; S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom., 33, 749-786 (1991) · Zbl 0696.35087 · doi:10.4310/jdg/1214446564
[23] E. Cinti; C. Sinestrari; E. Valdinoci, Neckpinch singularities in fractional mean curvature flows, Proc. Amer. Math. Soc., 146, 2637-2646 (2018) · Zbl 1390.53068 · doi:10.1090/proc/14002
[24] F. Da Lio; N. Forcadel; R. Monneau, Convergence of a non-local eikonal equation to anisotropic mean curvature motion. application to dislocations dynamics, J. Eur. Math. Soc. (JEMS), 10, 1061-1104 (2008) · Zbl 1158.35324 · doi:10.4171/JEMS/140
[25] E. De Giorgi, Barriers, Boundaries, Motion of Manifolds, Conference held at Dipartimento di Matematica, Univ. of Pavia, March 18, 1994.
[26] L. C. Evans, Convergence of an algorithm for mean curvature motion,, Indiana Univ. Math. J., 42 (1993), 533-557. · Zbl 0802.65098
[27] N. Forcadel; C. Imbert; R. Monneau, Homogenization of some particle systems with two-body interactions and of the dislocation dynamics, DCDS-A, 23, 785-826 (2009) · Zbl 1154.35306 · doi:10.3934/dcds.2009.23.785
[28] P. Hajłasz, Sobolev Spaces on Metric-Measure Spaces, volume 338 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2003. · Zbl 1048.46033
[29] C. Imbert, Level set approach for fractional mean curvature flows, Interfaces Free Bound., 11, 153-176 (2009) · Zbl 1173.35533 · doi:10.4171/IFB/207
[30] C. Imbert; R. Monneau; E. Rouy-Mironescu, Homogenization of first order equations with \(u/ \varepsilon \)-periodic Hamiltonians. part ii: application to dislocations dynamics, Comm. in PDEs, 33, 479-516 (2008) · Zbl 1143.35005 · doi:10.1080/03605300701318922
[31] H. Ishii, A generalization of the Bence, Merriman and Osher algorithm for motion by mean curvature, Proceedings of the International Conference on Curvature Flows and Related Topics Held in Levico, Italy, June 27-July 2nd, 1994, 5 (1995), 111-127. · Zbl 0844.35043
[32] H. Ishii; G. E. Pires; P. E. Souganidis, Threshold dynamics type approximation schemes for propagating fronts, J. Math. Soc. Japan, 51, 267-308 (1999) · Zbl 0935.53006 · doi:10.2969/jmsj/05120267
[33] J. M. Mazon; J. D. Rossi; J. Toledo, Nonlocal perimeter, curvature and minimal surfaces for measurable sets, J. Anal. Math., 138, 235-279 (2019) · Zbl 1426.49043 · doi:10.1007/s11854-019-0027-5
[34] V. Pagliari, Halfspaces minimise nonlocal perimeter: A proof via calibrations, Ann. Mat. Pura Appl., 199, 1685-1696 (2020) · Zbl 1452.49025 · doi:10.1007/s10231-019-00937-7
[35] O. Savin; E. Valdinoci, \( \Gamma \)-convergence for nonlocal phase transitions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29, 479-500 (2012) · Zbl 1253.49008 · doi:10.1016/j.anihpc.2012.01.006
[36] D. Slepčev, Approximation schemes for propagation of fronts with nonlocal velocities and Neumann boundary conditions, Nonlinear Anal., 52, 79-115 (2003) · Zbl 1028.35068 · doi:10.1016/S0362-546X(02)00098-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.