×

Homogenization of first order equations with (\(u/\varepsilon\))-periodic Hamiltonians part II: Application to dislocations dynamics. (English) Zbl 1143.35005

Summary: This paper is concerned with a result of homogenization of a non-local first order Hamilton-Jacobi equation describing the dislocations dynamics. Our model for the interaction between dislocations involves both an integro-differential operator and a (local) Hamiltonian depending periodically on \(u/\varepsilon\). The first two authors studied in part I [Arch. Ration. Mech. Anal. 187, No. 1, 49–89 (2008; Zbl 1127.70009)] homogenization problems involving such local Hamiltonians. Two main ideas of this previous work are used: on the one hand, we prove an ergodicity property of this equation by constructing approximate correctors which are necessarily non periodic in space in general; on the other hand, the proof of the convergence of the solution uses here a twisted perturbed test function for a higher dimensional problem. The limit equation is a nonlinear diffusion equation involving a first order Lévy operator; the nonlinearity keeps memory of the short range interaction, while the Lévy operator keeps memory of long ones. The homogenized equation is a kind of effective plastic law for densities of dislocations moving in a single slip plane.

MSC:

35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
35B10 Periodic solutions to PDEs
35F20 Nonlinear first-order PDEs
45K05 Integro-partial differential equations
47G20 Integro-differential operators
49L25 Viscosity solutions to Hamilton-Jacobi equations in optimal control and differential games

Citations:

Zbl 1127.70009

References:

[1] DOI: 10.1006/jdeq.1999.3665 · Zbl 0945.35010 · doi:10.1006/jdeq.1999.3665
[2] DOI: 10.1006/jdeq.2001.4118 · Zbl 1023.35010 · doi:10.1006/jdeq.2001.4118
[3] DOI: 10.1081/PDE-100002418 · Zbl 1014.49021 · doi:10.1081/PDE-100002418
[4] DOI: 10.1137/S0363012900366741 · Zbl 1017.49028 · doi:10.1137/S0363012900366741
[5] DOI: 10.1007/s00205-003-0266-5 · Zbl 1032.35103 · doi:10.1007/s00205-003-0266-5
[6] Alvarez O., C. R. Math. Acad. Sci. Paris 338 pp 679– (2004)
[7] DOI: 10.1007/s00205-006-0418-5 · Zbl 1158.74335 · doi:10.1007/s00205-006-0418-5
[8] DOI: 10.1137/S0036141099350869 · Zbl 0960.70015 · doi:10.1137/S0036141099350869
[9] Barles G., C. R. Acad. Sci. Paris Sér. I Math. 330 pp 963– (2000)
[10] DOI: 10.1137/S0036141000369344 · Zbl 0986.35047 · doi:10.1137/S0036141000369344
[11] DOI: 10.1002/cpa.20069 · Zbl 1063.35025 · doi:10.1002/cpa.20069
[12] Clarke F. H., Nonsmooth Analysis and Control Theory (1997)
[13] DOI: 10.1090/S0273-0979-1992-00266-5 · Zbl 0755.35015 · doi:10.1090/S0273-0979-1992-00266-5
[14] Evans L. C., Proc. Roy. Soc. Edinburgh Sect. A 111 pp 359– (1989)
[15] Evans L. C., Proc. Roy. Soc. Edinburgh Sect. A 120 pp 245– (1992)
[16] Fathi A., C. R. Acad. Sci. Paris Sér. I Math. 327 pp 267– (1998)
[17] François D., Comportement Mécanique des Matériaux (1995)
[18] DOI: 10.1016/S1359-6454(99)00215-3 · doi:10.1016/S1359-6454(99)00215-3
[19] DOI: 10.1016/S1359-6454(02)00517-7 · doi:10.1016/S1359-6454(02)00517-7
[20] DOI: 10.3934/dcds.2005.13.1069 · Zbl 1097.35078 · doi:10.3934/dcds.2005.13.1069
[21] DOI: 10.1512/iumj.1998.47.1385 · Zbl 0924.49020 · doi:10.1512/iumj.1998.47.1385
[22] DOI: 10.1016/j.jde.2004.06.001 · Zbl 1073.35059 · doi:10.1016/j.jde.2004.06.001
[23] DOI: 10.1007/s00205-007-0074-4 · Zbl 1127.70009 · doi:10.1007/s00205-007-0074-4
[24] Ishii H., Stochastic Analysis, Control, Optimization and Applications pp 305– (1999)
[25] Ishii H., International Conference on Differential Equations 1 pp 600– (2000)
[26] Kratochvil J., Computer Simulation in Materials Science pp 291– (1996) · doi:10.1007/978-94-009-1628-9_17
[27] Kröner E., Kontinuumstheorie der Versetzungen und Eigenspannungen (1958) · Zbl 0084.40003 · doi:10.1007/978-3-642-94719-3
[28] Lardner R. W., Mathematical Theory of Dislocations and Fracture (1974) · Zbl 0301.73036
[29] DOI: 10.1007/BF02765025 · Zbl 0631.49018 · doi:10.1007/BF02765025
[30] Lions P.-L., Homogeneization of Hamilton–Jacobi Equations (1986)
[31] DOI: 10.1081/PDE-200050077 · Zbl 1065.35047 · doi:10.1081/PDE-200050077
[32] Roquejoffre J.-M., C. R. Acad. Sci. Paris Sér. I Math. 326 pp 185– (1998) · Zbl 0924.70017 · doi:10.1016/S0764-4442(97)89468-2
[33] DOI: 10.1080/03605309108820789 · Zbl 0742.45004 · doi:10.1080/03605309108820789
[34] DOI: 10.1080/14786430310001600213 · doi:10.1080/14786430310001600213
[35] DOI: 10.1209/epl/i2003-10175-2 · doi:10.1209/epl/i2003-10175-2
[36] Souganidis P. E., Asymptot. Anal. 20 pp 1– (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.