×

A notion of nonlocal curvature. (English) Zbl 1296.53021

Summary: We consider a nonlocal (or fractional) curvature and we investigate similarities and differences with respect to the classical local case. In particular, we show that the nonlocal mean curvature can be seen as an average of suitable nonlocal directional curvatures and there is a natural asymptotic convergence to the classical case. Nevertheless, different from the classical cases, minimal and maximal nonlocal directional curvatures are not in general attained at perpendicular directions and, in fact, one can arbitrarily prescribe the set of extremal directions for nonlocal directional curvatures. Also, the classical directional curvatures naturally enjoy some linear properties that are lost in the nonlocal framework. In this sense, nonlocal directional curvatures are somewhat intrinsically nonlinear.

MSC:

53A07 Higher-dimensional and -codimensional surfaces in Euclidean and related \(n\)-spaces
49Q05 Minimal surfaces and optimization
35R11 Fractional partial differential equations
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] DOI: 10.1007/s00229-010-0399-4 · Zbl 1207.49051 · doi:10.1007/s00229-010-0399-4
[2] DOI: 10.2422/2036-2145.201202_007 · Zbl 1316.35061 · doi:10.2422/2036-2145.201202_007
[3] Caffarelli L., Comm. Pure Appl. Math. 63 (9) pp 1111– (2010)
[4] DOI: 10.1007/s00205-008-0181-x · Zbl 1190.65132 · doi:10.1007/s00205-008-0181-x
[5] DOI: 10.1016/j.aim.2013.08.007 · Zbl 1284.53008 · doi:10.1016/j.aim.2013.08.007
[6] DOI: 10.1007/s00526-010-0359-6 · Zbl 1357.49143 · doi:10.1007/s00526-010-0359-6
[7] DOI: 10.3934/dcds.2013.33.2777 · Zbl 1275.49083 · doi:10.3934/dcds.2013.33.2777
[8] DOI: 10.1016/j.bulsci.2011.12.004 · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[9] DOI: 10.1512/iumj.1993.42.42024 · Zbl 0802.65098 · doi:10.1512/iumj.1993.42.42024
[10] DOI: 10.1016/j.jfa.2011.02.012 · Zbl 1228.46030 · doi:10.1016/j.jfa.2011.02.012
[11] DOI: 10.1007/978-1-4684-9486-0 · doi:10.1007/978-1-4684-9486-0
[12] DOI: 10.4171/IFB/207 · Zbl 1173.35533 · doi:10.4171/IFB/207
[13] Ishii H., Curvature flows and related topics (Levico, 1994). GAKUTO Internat. Ser. Math. Sci. Appl. 5 pp 111– (1995)
[14] DOI: 10.1007/978-1-4612-1574-5 · doi:10.1007/978-1-4612-1574-5
[15] Merriman B., Diffusion Generated Motion by Mean Curvature (1992)
[16] DOI: 10.1007/s00526-012-0539-7 · Zbl 1275.35065 · doi:10.1007/s00526-012-0539-7
[17] DOI: 10.1007/s00032-013-0199-x · Zbl 1264.35269 · doi:10.1007/s00032-013-0199-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.