×

Sub-critical and critical stochastic quasi-geostrophic equations with infinite delay. (English) Zbl 1471.35274

Summary: In this paper, we investigate a stochastic fractionally dissipative quasi-geostrophic equation driven by a multiplicative white noise, whose external forces contain hereditary characteristics. The existence and uniqueness of both local martingale and local pathwise solutions are established in \(H^s\) with \(s\geq 2-2\alpha\), where \(\alpha\in(\frac{1}{2},1)\). For the critical case \(\alpha=\frac{1}{2}\), we obtain the similar results in \(H^s\) with \(s>1\).

MSC:

35Q86 PDEs in connection with geophysics
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60H40 White noise theory
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids
86A05 Hydrology, hydrography, oceanography
86A10 Meteorology and atmospheric physics
35R07 PDEs on time scales
35R60 PDEs with randomness, stochastic partial differential equations
35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] Z. Brzeźniak; E. Motyl, Fractionally dissipative stochastic quasi-geostrophic type equations on \(\mathbb{R}^d\), SIAM J. Math. Anal., 51, 2306-2358 (2019) · Zbl 1419.60049 · doi:10.1137/17M1111589
[2] Z. Brzézniak; S. Peszat, Strong local and global solutions for stochastic Navier-Stokes equations, infinite dimensional stochastic analysis, Verh. Afd. Natuurkd. 1. Reeks. K. Ned. Akad. Wet., 52, 85-98 (2000) · Zbl 0985.35061
[3] T. Caraballo; J. Real, Attractors for 2D-Navier-Stokes models with delays, J. Differential Equations, 205, 271-297 (2004) · Zbl 1068.35088 · doi:10.1016/j.jde.2004.04.012
[4] T. Caraballo; X. Han, A survey on Navier-Stokes models with delays: existence, uniqueness and asymptotic behavior of solutions, Discrete Contin. Dyn. Syst. Ser. S, 8, 1079-1101 (2015) · Zbl 1406.35221 · doi:10.3934/dcdss.2015.8.1079
[5] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia Math. Appl., vol. 152, Cambridge University Press, 2014. · Zbl 1317.60077
[6] A. Debussche; N. Glatt-Holtz; R. Temam, Local martingale and pathwise solutions for an abstract fluids model, Phys. D, 240, 1123-1144 (2011) · Zbl 1230.60065 · doi:10.1016/j.physd.2011.03.009
[7] T. Dlotko; T. Liang; Y. Wang, Critical and super-critical abstract parabolic equations, Discrete Contin. Dyn. Syst. Ser. B, 25, 1517-1541 (2020) · Zbl 1435.35206 · doi:10.3934/dcdsb.2019238
[8] R. Farwig; C. Qian, Asymptotic behavior for the quasi-geostrophic equations with fractional dissipation in \(\mathbb{R}^2\), J. Differential Equations, 266, 6525-6579 (2019) · Zbl 1409.35034 · doi:10.1016/j.jde.2018.11.009
[9] F. Flandoli; D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Related Fields, 102, 367-391 (1995) · Zbl 0831.60072 · doi:10.1007/BF01192467
[10] N. Glatt-Holtz; M. Ziane, The stochastic primitive equations in two space dimensions with multiplicative noise, Discrete Contin. Dyn. Syst. Ser. B, 10, 801-822 (2008) · Zbl 1147.76013 · doi:10.3934/dcdsb.2008.10.801
[11] N. Glatt-Holtz; M. Ziane, Strong pathwise solutions of the stochastic Navier-Stokes system, Adv. Differential Equations, 14, 567-600 (2009) · Zbl 1195.60090
[12] N. Ju, Global solutions to the two dimensional quasi-geostrophic equation with critical or super-critical dissipation, Math. Ann., 334, 627-642 (2006) · Zbl 1145.76053 · doi:10.1007/s00208-005-0715-6
[13] N. Ju, Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space, Comm. Math. Phys., 251, 365-376 (2004) · Zbl 1106.35061 · doi:10.1007/s00220-004-1062-2
[14] N. Ju, The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations, Comm. Math. Phys., 255, 161-181 (2005) · Zbl 1088.37049 · doi:10.1007/s00220-004-1256-7
[15] T. G. Kurtz, The Yamada-Watanabe-Engelbert theorem for general stochastic equations and inequalities, Electr. J. Probab., 12, 951-965 (2007) · Zbl 1157.60068 · doi:10.1214/EJP.v12-431
[16] L. Liu; T. Caraballo, Analysis of a stochastic 2D-Navier-Stokes model with infinite delay, J. Dynam. Differential Equations, 31, 2249-2274 (2019) · Zbl 1427.35182 · doi:10.1007/s10884-018-9703-x
[17] H. Lu; S. Lü; J. Xin; D. Huang, A random attractor for the stochastic quasi-geostrophic dynamical system on unbounded domains, Nonlinear Anal., 90, 96-112 (2013) · Zbl 1281.35101 · doi:10.1016/j.na.2013.05.020
[18] P. Marín-Rubio; A. M. Márquez-Durán; J. Real, Three dimensional system of globally modified Navier-Stokes equations with infinite delays, Discrete Contin. Dyn. Syst. Ser. B, 14, 655-673 (2010) · Zbl 1200.35218 · doi:10.3934/dcdsb.2010.14.655
[19] T. T. Medjo, Attractors for the multilayer quasi-geostrophic equations of the ocean with delays, Appl. Anal., 87, 325-347 (2008) · Zbl 1133.76313 · doi:10.1080/00036810701858177
[20] R. Mikulevicius; B. L. Rozovskii, Stochastic Navier-Stokes equations for turbulent flows, SIAM J. Math. Anal., 35, 1250-1310 (2004) · Zbl 1062.60061 · doi:10.1137/S0036141002409167
[21] C. J. Niche; G. Planas, Existence and decay of solutions to the dissipative quasi-geostrophic equation with delays, Nonlinear Anal., 75, 3936-3950 (2012) · Zbl 1238.35172 · doi:10.1016/j.na.2012.02.017
[22] E. Pardoux, Stochastic partial differential equations and filtering of diffusion processes, Stochastics, 3, 127-167 (1979) · Zbl 0424.60067 · doi:10.1080/17442507908833142
[23] J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987. · Zbl 0713.76005
[24] C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, in: Lecture Notes in Mathematics, vol. 1905, Springer, Berlin, 2007. · Zbl 1123.60001
[25] M. Röckner; B. Schmuland; X. Zhang, Yamada-Watanabe theorem for stochastic evolution equations in infinite dimensions, Condensed Matter Phys., 2, 247-259 (2008)
[26] M. Röckner; R. Zhu; X. Zhu, Sub and supercritical stochastic quasi-geostrophic equation, Ann. Probab., 43, 1202-1273 (2015) · Zbl 1322.60121 · doi:10.1214/13-AOP887
[27] M. Röckner; R. Zhu; X. Zhu, Stochastic quasi-geostrophic equation, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 15, 1-6 (2012) · Zbl 1248.60074 · doi:10.1142/S0219025712500014
[28] T. Taniguchi, The existence and asymptotic behaviour of energy solutions to stochastic 2D functional Navier-Stokes equations driven by Levy processes, J. Math. Anal. Appl., 385, 634-654 (2012) · Zbl 1233.60041 · doi:10.1016/j.jmaa.2011.06.076
[29] R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, North-Holland, Amsterdam-New York-Oxford, 1977. · Zbl 0383.35057
[30] L. Wan; J. Duan, Exponential stability of the multi-layer quasi-geostrophic ocean model with delays, Nonlinear Anal., 71, 799-811 (2009) · Zbl 1171.35447 · doi:10.1016/j.na.2008.10.107
[31] J. Wu, Dissipative quasi-geostrophic equations with \(L^p\) data, Electron. J. Differential Equations, 56, 1-13 (2001) · Zbl 0987.35127
[32] R. Zhu; X. Zhu, Random attractor associated with the quasi-geostrophic equation, J. Dynam. Differential Equations, 29, 289-322 (2017) · Zbl 1368.60069 · doi:10.1007/s10884-016-9537-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.