×

Sub and supercritical stochastic quasi-geostrophic equation. (English) Zbl 1322.60121

The quasi-geostrophic equation is an important model in geophysical fluid dynamics. This paper investigates the following stochastic quasi-geostrophic equation on the two-dimensional torus \(\mathbb T^2\): \[ \dot \theta(t) =-u(t)\cdot\nabla \theta(t) -\kappa (-\Delta)^\alpha\theta(t) +G(\theta)\eta(t),\;\;\theta(0): \mathbb T^2\to \mathbb R, \] where \(\alpha>0\) is a constant, \(\eta\) is a Gaussian random field with white noise in time, \(u\) is determined by \(\theta\) via \[ u= (u_1,u_2) = (-R_2 \theta, R_1\theta), \] where \(R_j\) is the \(j\)-th periodic Riesz transform. The existence of a weak solution and the Markov selection are derived for \(\alpha\in (0,1)\), the existence and uniqueness (i.e. well-posedness) of strong solutions is proved for \(\alpha\in (\frac 1 2,1)\). Moreover, sufficient conditions for the ergodicity, exponential ergodicity and the law of large numbers for the solution are presented.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60H30 Applications of stochastic analysis (to PDEs, etc.)
60G60 Random fields
60G15 Gaussian processes
60F15 Strong limit theorems
35Q86 PDEs in connection with geophysics

References:

[1] Aldous, D. (1978). Stopping times and tightness. Ann. Probab. 6 335-340. · Zbl 0391.60007 · doi:10.1214/aop/1176995579
[2] Brannan, J. R., Duan, J. and Wanner, T. (1998). Dissipative quasi-geostrophic dynamics under random forcing. J. Math. Anal. Appl. 228 221-233. · Zbl 0922.60054 · doi:10.1006/jmaa.1998.6128
[3] Brzeźniak, Z. (1997). On stochastic convolution in Banach spaces and applications. Stochastics Stochastics Rep. 61 245-295. · Zbl 0891.60056 · doi:10.1080/17442509708834122
[4] Brzeźniak, Z., van Neerven, J. M. A. M., Veraar, M. C. and Weis, L. (2008). Itô’s formula in UMD Banach spaces and regularity of solutions of the Zakai equation. J. Differential Equations 245 30-58. · Zbl 1154.60051 · doi:10.1016/j.jde.2008.03.026
[5] Caffarelli, L. A. and Vasseur, A. (2010). Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. of Math. (2) 171 1903-1930. · Zbl 1204.35063 · doi:10.4007/annals.2010.171.1903
[6] Constantin, P., Majda, A. J. and Tabak, E. (1994). Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar. Nonlinearity 7 1495-1533. · Zbl 0809.35057 · doi:10.1088/0951-7715/7/6/001
[7] Constantin, P. and Wu, J. (1999). Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 30 937-948. · Zbl 0957.76093 · doi:10.1137/S0036141098337333
[8] Córdoba, A. and Córdoba, D. (2004). A maximum principle applied to quasi-geostrophic equations. Comm. Math. Phys. 249 511-528. · Zbl 1309.76026 · doi:10.1007/s00220-004-1055-1
[9] Da Prato, G. (2004). Kolmogorov Equations for Stochastic PDEs . Birkhäuser, Basel. · Zbl 1066.60061
[10] Da Prato, G. and Debussche, A. (2003). Ergodicity for the 3D stochastic Navier-Stokes equations. J. Math. Pures Appl. (9) 82 877-947. · Zbl 1109.60047 · doi:10.1016/S0021-7824(03)00025-4
[11] Da Prato, G. and Zabczyk, J. (1992). Stochastic Equations in Infinite-Dimensions. Encyclopedia of Mathematics and Its Applications 44 . Cambridge Univ. Press, Cambridge. · Zbl 0761.60052
[12] Da Prato, G. and Zabczyk, J. (1996). Ergodicity for Infinite-Dimensional Systems. London Mathematical Society Lecture Note Series 229 . Cambridge Univ. Press, Cambridge. · Zbl 0849.60052 · doi:10.1017/CBO9780511662829
[13] Debussche, A. and Odasso, C. (2005). Ergodicity for a weakly damped stochastic non-linear Schrödinger equation. J. Evol. Equ. 5 317-356. · Zbl 1091.60010 · doi:10.1007/s00028-005-0195-x
[14] Debussche, A. and Odasso, C. (2006). Markov solutions for the 3D stochastic Navier-Stokes equations with state dependent noise. J. Evol. Equ. 6 305-324. · Zbl 1110.35110 · doi:10.1007/s00028-006-0254-y
[15] Eckmann, J.-P. and Hairer, M. (2001). Uniqueness of the invariant measure for a stochastic PDE driven by degenerate noise. Comm. Math. Phys. 219 523-565. · Zbl 0983.60058 · doi:10.1007/s002200100424
[16] Flandoli, F. and Gatarek, D. (1995). Martingale and stationary solutions for stochastic Navier-Stokes equations. Probab. Theory Related Fields 102 367-391. · Zbl 0831.60072 · doi:10.1007/BF01192467
[17] Flandoli, F. and Romito, M. (2007). Regularity of transition semigroups associated to a 3D stochastic Navier-Stokes equation. In Stochastic Differential Equations : Theory and Applications. Interdiscip. Math. Sci. 2 263-280. World Sci. Publ., Hackensack, NJ. · Zbl 1136.35112 · doi:10.1142/9789812770639_0010
[18] Flandoli, F. and Romito, M. (2008). Markov selections for the 3D stochastic Navier-Stokes equations. Probab. Theory Related Fields 140 407-458. · Zbl 1133.76016 · doi:10.1007/s00440-007-0069-y
[19] Goldys, B. and Maslowski, B. (2005). Exponential ergodicity for stochastic Burgers and 2D Navier-Stokes equations. J. Funct. Anal. 226 230-255. · Zbl 1078.60049 · doi:10.1016/j.jfa.2004.12.009
[20] Goldys, B., Röckner, M. and Zhang, X. (2009). Martingale solutions and Markov selections for stochastic partial differential equations. Stochastic Process. Appl. 119 1725-1764. · Zbl 1177.60060 · doi:10.1016/j.spa.2008.08.009
[21] Hairer, M. and Mattingly, J. C. (2006). Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing. Ann. of Math. (2) 164 993-1032. · Zbl 1130.37038 · doi:10.4007/annals.2006.164.993
[22] Huang, D., Guo, B. and Han, Y. (2008). Random attractors for a quasi-geostrophic dynamical system under stochastic forcing. Int. J. Dyn. Syst. Differ. Equ. 1 147-154. · Zbl 1151.37320 · doi:10.1504/IJDSDE.2008.019676
[23] Ju, N. (2004). Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space. Comm. Math. Phys. 251 365-376. · Zbl 1106.35061 · doi:10.1007/s00220-004-1062-2
[24] Ju, N. (2005). On the two dimensional quasi-geostrophic equations. Indiana Univ. Math. J. 54 897-926. · Zbl 1185.35189 · doi:10.1512/iumj.2005.54.2518
[25] Kiselev, A. and Nazarov, F. (2010). A variation on a theme of Caffarelli and Vasseur. J. Math. Sci. 166 31-39. · Zbl 1288.35393 · doi:10.1007/s10958-010-9842-z
[26] Kiselev, A., Nazarov, F. and Volberg, A. (2007). Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent. Math. 167 445-453. · Zbl 1121.35115 · doi:10.1007/s00222-006-0020-3
[27] Komorowski, T., Peszat, S. and Szarek, T. (2010). On ergodicity of some Markov processes. Ann. Probab. 38 1401-1443. · Zbl 1214.60035 · doi:10.1214/09-AOP513
[28] Komorowski, T. and Walczuk, A. (2012). Central limit theorem for Markov processes with spectral gap in the Wasserstein metric. Stochastic Process. Appl. 122 2155-2184. · Zbl 1244.60024 · doi:10.1016/j.spa.2012.03.006
[29] Krylov, N. V. (2010). Itô’s formula for the \(L_{p}\)-norm of stochastic \(W^{1}_{p}\)-valued processes. Probab. Theory Related Fields 147 583-605. · Zbl 1232.60050 · doi:10.1007/s00440-009-0217-7
[30] Kuksin, S., Piatnitski, A. and Shirikyan, A. (2002). A coupling approach to randomly forced nonlinear PDEs. II. Comm. Math. Phys. 230 81-85. · Zbl 1010.60066 · doi:10.1007/s00220-002-0707-2
[31] Kuksin, S. and Shirikyan, A. (2001). A coupling approach to randomly forced nonlinear PDE’s. I. Comm. Math. Phys. 221 351-366. · Zbl 0991.60056 · doi:10.1007/s002200100479
[32] Kuksin, S. and Shirikyan, A. (2002). Coupling approach to white-forced nonlinear PDEs. J. Math. Pures Appl. (9) 81 567-602. · Zbl 1021.37044 · doi:10.1016/S0021-7824(02)01259-X
[33] Kurtz, T. G. (2007). The Yamada-Watanabe-Engelbert theorem for general stochastic equations and inequalities. Electron. J. Probab. 12 951-965. · Zbl 1157.60068 · doi:10.1214/EJP.v12-431
[34] Lindvall, T. (1992). Lectures on the Coupling Method . Wiley, New York. · Zbl 0850.60019
[35] Mattingly, J. C. (1999). Ergodicity of 2D Navier-Stokes equations with random forcing and large viscosity. Comm. Math. Phys. 206 273-288. · Zbl 0953.37023 · doi:10.1007/s002200050706
[36] Mattingly, J. C. (2002). Exponential convergence for the stochastically forced Navier-Stokes equations and other partially dissipative dynamics. Comm. Math. Phys. 230 421-462. · Zbl 1054.76020 · doi:10.1007/s00220-002-0688-1
[37] Mikulevicius, R. and Rozovskii, B. L. (2005). Global \(L_{2}\)-solutions of stochastic Navier-Stokes equations. Ann. Probab. 33 137-176. · Zbl 1098.60062 · doi:10.1214/009117904000000630
[38] Odasso, C. (2006). Ergodicity for the stochastic complex Ginzburg-Landau equations. Ann. Inst. Henri Poincaré Probab. Stat. 42 417-454. · Zbl 1104.35078 · doi:10.1016/j.anihpb.2005.06.002
[39] Odasso, C. (2007). Exponential mixing for the 3D stochastic Navier-Stokes equations. Comm. Math. Phys. 270 109-139. · Zbl 1122.60059 · doi:10.1007/s00220-006-0156-4
[40] Odasso, C. (2008). Exponential mixing for stochastic PDEs: The non-additive case. Probab. Theory Related Fields 140 41-82. · Zbl 1137.60030 · doi:10.1007/s00440-007-0057-2
[41] Ondreját, M. (2005). Brownian representations of cylindrical local martingales, martingale problem and strong Markov property of weak solutions of SPDEs in Banach spaces. Czechoslovak Math. J. 55 1003-1039. · Zbl 1081.60049 · doi:10.1007/s10587-005-0084-z
[42] Pedlosky, J. (1987). Geophysical Fluid Dynamics . Springer, New York. · Zbl 0713.76005
[43] Prévôt, C. and Röckner, M. (2007). A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Math. 1905 . Springer, Berlin. · Zbl 1123.60001 · doi:10.1007/978-3-540-70781-3
[44] Resnick, S. G. (1995). Dynamical problems in non-linear advective partial differential equations. Ph.D. thesis, Univ. of Chicago.
[45] Röckner, M., Schmuland, B. and Zhang, X. (2008). Yamada-Watanabe theorem for stochastic evolution equations in infinite dimensions. Condensed Matter Physics 54 247-259.
[46] Romito, M. (2008). Analysis of equilibrium states of Markov solutions to the 3D Navier-Stokes equations driven by additive noise. J. Stat. Phys. 131 415-444. · Zbl 1150.82027 · doi:10.1007/s10955-007-9477-8
[47] Stein, E. M. (1970). Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series 30 . Princeton Univ. Press, Princeton, N.J. · Zbl 0207.13501
[48] Stroock, D. W. and Varadhan, S. R. S. (1979). Multidimensional Diffusion Processes. Grundlehren der Mathematischen Wissenschaften [ Fundamental Principles of Mathematical Sciences ] 233 . Springer, Berlin. · Zbl 0426.60069
[49] Temam, R. (1984). Navier-Stokes Equations : Theory and Numerical Analysis , 3rd ed. Studies in Mathematics and Its Applications 2 . North-Holland, Amsterdam. · Zbl 0568.35002
[50] Zhu, R. C. and Zhu, X. C. (2012). Random attractor associated with the quasi-geostrophic equation. Preprint. Available at . arXiv:1303.5970 · Zbl 1242.35060 · doi:10.4134/CKMS.2012.27.1.097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.