Skip to main content
Log in

Global Solutions to the Two Dimensional Quasi-Geostrophic Equation with Critical or Super-Critical Dissipation

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

The two dimensional quasi-geostrophic (2D QG) equation with critical and super-critical dissipation is studied in Sobolev space H s(ℝ2). For critical case (α=), existence of global (large) solutions in H s is proved for s when is small. This generalizes and improves the results of Constantin, D. Cordoba and Wu [4] for s = 1, 2 and the result of A. Cordoba and D. Cordoba [8] for s=. For s≥1, these solutions are also unique. The improvement for pushing s down from 1 to is somewhat surprising and unexpected. For super-critical case (α ∈ (0,)), existence and uniqueness of global (large) solution in H s is proved when the product is small for suitable s≥2−2α, p ∈ [1,∞] and β ∈ (0,1].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chae, D.: The Quasi-Geostrophic Equation in the Triebel-Lizorkin Spaces. Nonlinearity, 16, 479–495 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chae, D., Lee, J.: Global well-posedness in the super-critical dissipative quasi-geostrophic Equations. Comm. Math. Phys. 233(2), 297–311 (2003)

    MathSciNet  Google Scholar 

  3. Coifman, R., Meyer, Y.: Au delà des operateurs pseudo-differentiels. Asterisque 57, Societe Mathematique de France, Paris, 1978

  4. Constantin, P., Cordoba, D., Wu, J.: On the critical dissipative quasi-geostrophic equations. Indiana University Mathematics Journal, 50, 97–107 (2001)

    MATH  MathSciNet  Google Scholar 

  5. Constantin, P., Majda, A., Tabak, E.: Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar. Nonlinearity 7, 1495–1533 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Constantin, P., Wu, J.: Behavior of solutions of 2D quasi-geostrophic equations. SIAM Journal on Mathematical Analysis, 30, 937–948 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cordoba, D.: Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation. Ann. of Math. 148, 1135–1152 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cordoba, A., Cordoba, D.: A maximum principle applied to quasi-geostrophic equations. Comm. Math. Phys. 249(3), 511–528 (2004)

    MathSciNet  Google Scholar 

  9. Cordoba, D., Fefferman, C.: Growth of solutions for QG and 2D Euler equations. J. Amer. Math. Soc. 15(3), 665–670 (2002)

    Article  MathSciNet  Google Scholar 

  10. Deng J., Hou, Y., Yu, X.: Geometric Properties and Non-blowup of 2-D Quasi-geostrophic Equation. 2004, preprint

  11. Friedlander, S.: On vortex tube stretching and instabilities in an inviscid fluid. J. Math. Fluid Mech. 4(1), 30–44 (2002)

    Article  MathSciNet  Google Scholar 

  12. Held, I., Pierrehumbert, R., Garner, S., Swanson, K.: Surface quasi-geostrophic dynamics. J. Fluid Mech. 282, 1–20 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ju, N.: Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the sobolev space. Comm. Math. Phys. 251(2), 365–376 (2004)

    Article  MathSciNet  Google Scholar 

  14. Ju, N.: The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations. Comm. Math. Phys. 255(1), 161–181 (2005)

    Article  MathSciNet  Google Scholar 

  15. Ju, N.: On the two dimensional Quasi-Geostrophic equation. Indiana Univ. Math. J. 54(3), 897–926 (2005)

    Article  MathSciNet  Google Scholar 

  16. Ju, N.: Geometric constrains for global regularity of 2D quasi-geostrophic flow. preprint, submitted

  17. Ju, N.: Dissipative quasi-geostrophic equation: local well-posedness, global regularity and similarity solutions. preprint submitted

  18. Kato, T.: Liapunov functions and monotonicity in the Navier-Stokes equations. Lecture Notes in Mathematics, 1450, Springer-Verlag, Berlin, 1990

  19. Kato, T., Ponce, G.: Commutator estimates and Euler and Navier-Stokes equations. Comm. Pure Appl. Math. 41, 891–907 (1988)

    MATH  MathSciNet  Google Scholar 

  20. Kenig, C., Ponce, G., Vega, L.: Well-posedness of the initial value problem for the Korteweg-De Vries equation. J. Amer. Math. Soc. 4, 323–347 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  21. Majda, A., Tabak, E.: A two-dimensional model for quasi-geostrophic flow: comparison with the two-dimensional Euler flow. Nonlinear phenomena in ocean dynamics (Los Alamos, NM, 1995). Phys. D 98(2–4), 515–522 (1996)

  22. Ohkitani, K., Yamada, M.: Inviscid and inviscid limit behavior of a surface quasi-geostrophic flow. Phys. Fluids, 9, 876–882 (1997)

    Article  MathSciNet  Google Scholar 

  23. Pedlosky, J.: Geophysical fluid dynamics. Springer-Verlag, New York, 1987

  24. Resnick, S.: Dynamical problems in non-linear advective partial differential equations. Ph.D. thesis, University of Chicago, 1995

  25. Schonbek, M., Schonbek, T.: Asymptotic behavior to dissipative quasi-geostrophic flows. SIAM J. Math. Anal. 35, 357–375 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Stein, E.: Singular integrals and differentiability properties of functions. Princeton University Press, Princeton, NJ, 1970

  27. Wu, J.: The Quasi-Geostrophic Equation and Its Two regularizations, communications in Partial Differential Equations. 27, 1161–1181 (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Ju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ju, N. Global Solutions to the Two Dimensional Quasi-Geostrophic Equation with Critical or Super-Critical Dissipation. Math. Ann. 334, 627–642 (2006). https://doi.org/10.1007/s00208-005-0715-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-005-0715-6

Keywords

Mathematics Subject Classification (2000)

Navigation