×

Mixed multiplicities and projective degrees of rational maps. (English) Zbl 1471.13052

Let \(B=\bigoplus_{\nu\in \mathbb N^r} [B]_\nu\) be a standard \(\mathbb N^r\)-graded algebra over an Artin local ring \(A=[B]_{(0,0,\dots,0)}.\) Let \(M=\bigoplus_{\nu\in \mathbb Z^r}[M]_\nu\) be a finite \(\mathbb Z^r\)-graded \(B\)-module. Let \(\ell\) denote length. The Hilbert function of \(M\) is defined as \(H_M(\nu)=\ell_A([M]_\nu)\) for all \(\nu\in \mathbb Z^r.\) For all large \(\nu\), \(H_M(\nu)\) is given by a polynomial \(P_M(\mathbf{X})=P_M(X_1, X_2, \ldots, X_r)\) with rational coefficients. Let \(\mathcal N\) denote the multigraded irrelevant ideal \(\mathcal N=\bigoplus_{v_1, v_2,\ldots, v_r> 0}[B]_\nu.\) The relevant support of \(M\) is defined as \(\text{Supp}_{++}(M)=\{{\mathfrak p}\in \text{Supp} (M)\mid {\mathfrak p} \text{ is } {\mathbb N^r-}\text{graded and } {\mathcal N} \not\subset {\mathfrak p}\}.\) Then \(\deg P_M(\mathbf{X})=d_{++}:=\dim \text{Supp} _{++}(M).\) Write \(P_M(\mathbf{X})\) as \[P_M(\mathbf{X})=\sum_{n_1, n_2, \ldots, n_r\geq 0}e(n_1, n_2, \ldots, n_r)\binom{X_1+n_1}{n_1}\dots \binom{X_r+n_r}{n_r}.\] If \(|\mathbf{n}|=n_1+n_2+\dots+n_r=d_{++}\) then \(e(n_1, n_2, \ldots, n_r):=e(\mathbf{n}, M)\) is a non-negative integer called the mixed multiplicity of \(M\) of the type \((n_1, n_2, \ldots, n_r).\) Mixed multiplicities are defined using the Hilbert series of \(M\) in this paper. let \(d=\dim M.\) Define the Hilbert series of \(M\) by \(\text{Hilb}_M(t_1, t_2, \ldots, t_r)=\sum_{\nu\in \mathbb Z^r}\ell_A([M]_\nu)t_1^{\nu_1}t_2^{\nu_2}\ldots t_r^{\nu_r}.\) It is proved that there are unique Laurent polynomials \(Q_{\mathbf{n}}(\mathbf{t})\) so that \(\text{Hilb}_M(\mathbf{t})=\sum_{|\mathbf{n}|=d}\frac{Q_{\mathbf{n}} (\mathbf{t})} {(1-t_1)^{n_1}(1-t_2)^{n_2}\ldots(1-t_r)^{n_r}}.\) Put \(\mathbf{1}=(1,\ldots, 1)\) and \(\mathbf{n}=(n_1, \ldots, n_r)\in \mathbb Z^r\) and \(|\mathbf{n}|=d-r.\) The mixed multiplicity of \(M\) of the type \(\mathbf{n}\) is defined as \(e_{\mathbf{n}}(M)=Q_{\mathbf{n}+1}(\mathbf{1}).\) The two notions of the mixed multiplicities are related by the equation \(e(\mathbf{n}, M)=e_{\mathbf{n}}(M/H_{\mathcal N}(M))\) where \(\mathbf{n}=d_{++}.\) Basic properties of mixed multiplicities are proved using filter-regular elements. The main objective of the paper is to use the mixed multiplicities to find the classical invariants in algebraic geometry called projective degrees of rational maps. Let \(k\) be a field and \(R=k[x_0, x_1, \ldots, x_d]\). Let \(n \geq d\) and \(\mathcal F : \mathbb P^d_k=\text{Proj}(R) \xrightarrow \;\mathbb P^n_k\) be a rational map defined by \(n+1\) homogeneous polynomials \(f_0, f_1, \ldots, f_n\in R\) of degree \(\delta>0\) and let \(I=(f_0, f_1, \ldots, f_n).\) The projective degrees of \(\mathcal F,\) denoted by \(d_i(\mathcal F),\) are defined to be the multidegrees of the graph of \(\mathcal F.\) The projective degrees are calculated using the special fiber rings. Using these techniques, the projective degrees of rational maps defined by perfect height two ideals and Gorenstein height three ideals are computed. The formulas for \(d_i(\mathcal F)\) are given in terms of the free resolutions of these ideals.

MSC:

13H15 Multiplicity theory and related topics
14E05 Rational and birational maps
13A30 Associated graded rings of ideals (Rees ring, form ring), analytic spread and related topics
13D02 Syzygies, resolutions, complexes and commutative rings

Software:

Macaulay2

References:

[1] Bhattacharya, P. B., The Hilbert function of two ideals, Proc. Camb. Philos. Soc., 53, 568-575 (1957) · Zbl 0080.02903
[2] Brodmann, M. P.; Sharp, R. Y., Local Cohomology, Cambridge Studies in Advanced Mathematics, vol. 136 (2013), Cambridge University Press: Cambridge University Press Cambridge, An algebraic introduction with geometric applications
[3] Bruns, W.; Herzog, J., Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics (1998), Cambridge University Press · Zbl 0909.13005
[4] Buchsbaum, D. A.; Eisenbud, D., Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3, Am. J. Math., 99, 3, 447-485 (1977) · Zbl 0373.13006
[5] Busé, L.; Cid-Ruiz, Y.; D’Andrea, C., Degree and birationality of multi-graded rational maps, Proc. Lond. Math. Soc., 121, 4, 743-787 (2020) · Zbl 1454.13017
[6] Cid-Ruiz, Y., Multiplicity of the saturated special fiber ring of height two perfect ideals, Proc. Am. Math. Soc., 148, 1, 59-70 (2020) · Zbl 1436.13007
[7] Cid-Ruiz, Y.; Mukundan, V., Multiplicity of the saturated special fiber ring of height three Gorenstein ideals, Acta Math. Vietnam. (2019), in press
[8] Cid-Ruiz, Y.; Simis, A., Degree of rational maps and specialization, Int. Math. Res. Not. (2019), in press
[9] Dolgachev, I. V., Classical Algebraic Geometry (2012), Cambridge University Press: Cambridge University Press Cambridge, A modern view · Zbl 1252.14001
[10] Eisenbud, D., Commutative Algebra with a View Towards Algebraic Geometry, Graduate Texts in Mathematics, vol. 150 (1995), Springer-Verlag · Zbl 0819.13001
[11] Eisenbud, D.; Harris, J., The Geometry of Schemes, Graduate Texts in Mathematics, vol. 197 (2000), Springer-Verlag: Springer-Verlag New York · Zbl 0960.14002
[12] Görtz, U.; Wedhorn, T., Algebraic Geometry I, Advanced Lectures in Mathematics (2010), Vieweg + Teubner: Vieweg + Teubner Wiesbaden, Schemes with examples and exercises · Zbl 1213.14001
[13] Grayson, D. R.; Stillman, M. E., Macaulay2, a software system for research in algebraic geometry, Available at
[14] Harris, J., Algebraic Geometry, Graduate Texts in Mathematics, vol. 133 (1995), Springer-Verlag: Springer-Verlag New York, A first course, Corrected reprint of the 1992 original
[15] Herrmann, M.; Hyry, E.; Ribbe, J.; Tang, Z., Reduction numbers and multiplicities of multigraded structures, J. Algebra, 197, 2, 311-341 (1997) · Zbl 0931.13002
[16] Herzog, J.; Hibi, T., Monomial Ideals, Graduate Texts in Mathematics, vol. 260 (2011), Springer-Verlag London, Ltd.: Springer-Verlag London, Ltd. London · Zbl 1206.13001
[17] Huneke, C.; Swanson, I., Integral Closure of Ideals, Rings, and Modules, Vol. 13 (2006), Cambridge University Press · Zbl 1117.13001
[18] Hyry, E., The diagonal subring and the Cohen-Macaulay property of a multigraded ring, Trans. Am. Math. Soc., 351, 6, 2213-2232 (1999) · Zbl 0916.13005
[19] Jayanthan, A. V.; Verma, J. K., Grothendieck-Serre formula and bigraded Cohen-Macaulay Rees algebras, J. Algebra, 254, 1, 1-20 (2002) · Zbl 1094.13504
[20] Katz, D.; Mandal, S.; Verma, J. K., Hilbert functions of bigraded algebras, (Commutative Algebra. Commutative Algebra, Trieste, 1992 (1994), World Sci. Publ.: World Sci. Publ. River Edge, NJ), 291-302 · Zbl 0927.13021
[21] Kleiman, S.; Thorup, A., A geometric theory of the Buchsbaum-Rim multiplicity, J. Algebra, 167, 1, 168-231 (1994) · Zbl 0815.13012
[22] Kustin, A.; Polini, C.; Ulrich, B., Blowups and fibers of morphisms, Nagoya Math. J., 224, 1, 168-201 (2016) · Zbl 1408.13013
[23] Michałek, M.; Sturmfels, B.; Uhler, C.; Zwiernik, P., Exponential varieties, Proc. Lond. Math. Soc. (3), 112, 1, 27-56 (2016) · Zbl 1345.14048
[24] Miller, E.; Sturmfels, B., Combinatorial Commutative Algebra, Graduate Texts in Mathematics, vol. 227 (2005), Springer-Verlag: Springer-Verlag New York · Zbl 1090.13001
[25] Trung, N. V.; Verma, J. K., Hilbert functions of multigraded algebras, mixed multiplicities of ideals and their applications, J. Commut. Algebra, 2, 4, 515-565 (2010) · Zbl 1237.13048
[26] Trung, N. V., Reduction exponent and degree bound for the defining equations of graded rings, Proc. Am. Math. Soc., 101, 2, 229-236 (1987) · Zbl 0641.13016
[27] Trung, N. V., Positivity of mixed multiplicities, Math. Ann., 319, 1, 33-63 (2001) · Zbl 0979.13023
[28] Van der Waerden, B. L., On Hilbert’s function, series of composition of ideals and a generalization of the theorem of Bezout, Proc. R. Acad. Amst., 31, 749-770 (1929) · JFM 54.0190.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.