×

Degree and birationality of multi-graded rational maps. (English) Zbl 1454.13017

Summary: We give formulas and effective sharp bounds for the degree of multi-graded rational maps and provide some effective and computable criteria for birationality in terms of their algebraic and geometric properties. We also extend the Jacobian dual criterion to the multi-graded setting. Our approach is based on the study of blow-up algebras, including syzygies, of the ideal generated by the defining polynomials of the rational map. A key ingredient is a new algebra that we call the saturated special fiber ring, which turns out to be a fundamental tool to analyze the degree of a rational map. We also provide a very effective birationality criterion and a complete description of the equations of the associated Rees algebra of a particular class of plane rational maps.

MSC:

13D02 Syzygies, resolutions, complexes and commutative rings
14E05 Rational and birational maps
13D45 Local cohomology and commutative rings
13P99 Computational aspects and applications of commutative rings

References:

[1] R.Achilles and M.Manaresi, ‘Multiplicity for ideals of maximal analytic spread and intersection theory���, J. Math. Kyoto Univ.33 (1993) 1029-1046. · Zbl 0816.13019
[2] M.Alberich‐Carramiñana, Geometry of the plane Cremona maps, Lecture Notes in Mathematics 1769 (Springer, Berlin Heidelberg, 2002). · Zbl 0991.14008
[3] M. F.Atiyah and I. G.Macdonald, Introduction to commutative algebra (Addison‐Wesley, Reading, MA, 1969). · Zbl 0175.03601
[4] N.Botbol, ‘The implicit equation of a multigraded hypersurface’, J. Algebra348 (2011) 381-401. · Zbl 1242.14049
[5] N.Botbol, L.Busé, M.Chardin, S. H.Hassanzadeh, A.Simis and Q. H.Tran, ‘Effective criteria for bigraded birational maps’, J. Symbolic Comput.81 (2017) 69-87. · Zbl 1361.14009
[6] M. P.Brodmann and R. Y.Sharp, Local cohomology: an algebraic introduction with geometric applications, 2nd edn, Cambridge Studies in Advanced Mathematics 136 (Cambridge University Press, Cambridge, 2013). · Zbl 1133.13017
[7] W.Bruns and J.Herzog, Cohen‐Macaulay rings, 2nd edn, Cambridge Studies in Advanced Mathematics (Cambridge University Press, Cambridge, 1998). · Zbl 0909.13005
[8] L.Busé and M.Chardin, ‘Implicitizing rational hypersurfaces using approximation complexes’, J. Symbolic Comput.40 (2005) 1150-1168. · Zbl 1120.14052
[9] L.Busé and J.‐P.Jouanolou, ‘On the closed image of a rational map and the implicitization problem’, J. Algebra265 (2003) 312-357. · Zbl 1050.13010
[10] Y.Cid‐Ruiz, ‘MultiGradedRationalMap, a package designed for macaulay2’, http://www2.macaulay2.com/Macaulay2/doc/Macaulay2‐1.15/share/doc/Macaulay2/MultiGradedRationalMap/html/.
[11] Y.Cid‐Ruiz, ‘A \(D\)‐module approach on the equations of the Rees algebra’, J. Commut. Algebra, Preprint, 2017, arXiv:1706.06215.
[12] Y.Cid‐Ruiz, ‘Multiplicity of the saturated special fiber ring of height two perfect ideals’, Proc. Amer. Math. Soc.148 (2020) 59-70. · Zbl 1436.13007
[13] Y.Cid‐Ruiz and V.Mukundan, ‘Multiplicity of the saturated special fiber ring of height three gorenstein ideals’, Preprint, 2019, arXiv:1909.13633.
[14] D.Cox, J. W.Hoffman and H.Wang, ‘Syzygies and the Rees algebra’, J. Pure Appl. Algebra212 (2008) 1787-1796. · Zbl 1151.13012
[15] S. D.Cutkosky, H. T.Hà, H. Srinivasan and E.Theodorescu, ‘Asymptotic behavior of the length of local cohomology’, Canad. J. Math.57 (2005) 1178-1192. · Zbl 1095.13015
[16] I.Dolgachev, ‘Lectures on cremona transformations’, 2016. http://www.math.lsa.umich.edu/ idolga/cremonalect.pdf.
[17] A. V.Doria, S. H.Hassanzadeh and A.Simis, ‘A characteristic‐free criterion of birationality’, Adv. Math.230 (2012) 390-413. · Zbl 1251.14007
[18] D.Eisenbud, Commutative algebra with a view towards algebraic geometry, Graduate Texts in Mathematics 150 (Springer, Berlin, 1995). · Zbl 0819.13001
[19] D.Eisenbud and B.Ulrich, ‘Row ideals and fibers of morphisms’, Michigan Math. J.57 (2008) 261-268. (Special volume in honor of Melvin Hochster.) · Zbl 1193.13007
[20] H.Flenner, L.O’Carroll and W.Vogel, Joins and intersections, Springer Monographs in Mathematics (Springer, Berlin, 1999). · Zbl 0939.14003
[21] W.Fulton, Intersection theory, 2nd edn, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics] 2 (Springer, Berlin, 1998). · Zbl 0885.14002
[22] U.Görtz and T.Wedhorn, Algebraic geometry I: schemes with examples and exercises, Advanced Lectures in Mathematics (Vieweg + Teubner, Wiesbaden, 2010). · Zbl 1213.14001
[23] S.Goto and K.Watanabe, ‘On graded rings. I’, J. Math. Soc. Japan30 (1978) 179-213. · Zbl 0371.13017
[24] S.Goto and K.Watanabe, ‘On graded rings. II. \(( \mathbf{Z}^n\)‐graded rings)’, Tokyo J. Math.1 (1978) 237-261. · Zbl 0406.13007
[25] D. R.Grayson and M. E.Stillman, ‘Macaulay2, a software system for research in algebraic geometry’, http://www.math.uiuc.edu/Macaulay2/.
[26] C. D.Hacon, ‘Effective criteria for birational morphisms’, J. Lond. Math. Soc. (2)67 (2003) 337-348. · Zbl 1058.14020
[27] R.Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52 (Springer, New York-Heidelberg, 1977). · Zbl 0367.14001
[28] S. H.Hassanzadeh and A.Simis, ‘Plane Cremona maps: saturation and regularity of the base ideal’, J. Algebra371 (2012) 620-652. · Zbl 1275.13019
[29] S. H.Hassanzadeh and A.Simis, ‘Bounds on degrees of birational maps with arithmetically Cohen‐Macaulay graphs’, J. Algebra478 (2017) 220-236. · Zbl 1360.13033
[30] J.Herzog, T. J.Puthenpurakal and J. K.Verma, ‘Hilbert polynomials and powers of ideals’, Math. Proc. Cambridge Philos. Soc.145 (2008) 623-642. · Zbl 1157.13013
[31] J.Herzog, A.Simis and W. V.Vasconcelos, ‘Approximation complexes of blowing‐up rings’, J. Algebra74 (1982) 466-493. · Zbl 0484.13006
[32] J.Herzog, A.Simis and W. V.Vasconcelos, ‘Approximation complexes of blowing‐up rings. II’, J. Algebra82 (1983) 53-83. · Zbl 0515.13018
[33] J.Herzog, A.Simis and W. V.Vasconcelos, ‘Koszul homology and blowing‐up rings’, Commutative algebra (eds S.Greco (ed.) and G.Valla (ed.); Dekker, New York, NY, 1983) 79-169. · Zbl 0499.13002
[34] J. W.Hoffman and H. H.Wang, ‘Curvilinear base points, local complete intersection and Koszul syzygies in biprojective spaces’, Trans. Amer. Math. Soc.358 (2006) 3385-3398. · Zbl 1158.14316
[35] J.Hong, A.Simis and W. V.Vasconcelos, ‘On the homology of two‐dimensional elimination’, J. Symbolic Comput.43 (2008) 275-292. · Zbl 1139.13013
[36] K.Hulek, S.Katz and F.‐O.Schreyer, ‘Cremona transformations and syzygies’, Math. Z.209 (1992) 419-443. · Zbl 0767.14005
[37] E.Hyry, ‘The diagonal subring and the Cohen‐Macaulay property of a multigraded ring’, Trans. Amer. Math. Soc.351 (1999) 2213-2232. · Zbl 0916.13005
[38] J.Jeffries, J.Montaño and M.Varbaro, ‘Multiplicities of classical varieties’, Proc. Lond. Math. Soc. (3)110 (2015) 1033-1055. · Zbl 1314.13042
[39] J.‐P.Jouanolou, ‘Aspects invariants de l’élimination’, Adv. Math.114 (1995) 1-174. · Zbl 0882.13007
[40] I.Kaplansky, Commutative rings, revised edn (The University of Chicago Press, Chicago, IL, 1974). · Zbl 0296.13001
[41] S.Kleiman and A.Thorup, ‘A geometric theory of the Buchsbaum‐Rim multiplicity’, J. Algebra167 (1994) 168-231. · Zbl 0815.13012
[42] A.Kustin, C.Polini and B.Ulrich, ‘Rational normal scrolls and the defining equations of Rees algebras’, J. reine angew. Math.650 (2011) 23-65. · Zbl 1211.13005
[43] A.Kustin, C.Polini and B.Ulrich, ‘Blowups and fibers of morphisms’, Nagoya Math. J.224 (2016) 168-201. · Zbl 1408.13013
[44] A.Kustin, C.Polini and B.Ulrich, ‘The bi‐graded structure of symmetric algebras with applications to Rees rings’, J. Algebra469 (2017) 188-250. · Zbl 1357.13008
[45] A.Kustin, C.Polini and B.Ulrich, ‘The equations defining blowup algebras of height three Gorenstein ideals’, Algebra Number Theory11 (2017) 1489-1525. · Zbl 1386.13014
[46] T.Marley, ‘The associated primes of local cohomology modules over rings of small dimension’, Manuscripta Math.104 (2001) 519-525. · Zbl 0987.13009
[47] A.Micali, ‘Sur les algebres universelles’, Ann. Inst. Fourier14 (1964) 33-87. · Zbl 0152.02602
[48] I.Pan and F.Russo, ‘Cremona transformations and special double structures’, Manuscripta Math.117 (2005) 491-510. · Zbl 1093.14018
[49] I.Pan and A.Simis, ‘Cremona maps of de Jonquières type’, Canad. J. Math.67 (2015) 923-941. · Zbl 1337.14014
[50] F.Russo and A.Simis, ‘On birational maps and Jacobian matrices’, Compos. Math.126 (2001) 335-358. · Zbl 1036.14005
[51] P.Schenzel, ‘On the use of local cohomology in algebra and geometry’, Six lectures on commutative algebra, (eds J.Elias (ed.), J. M.Giral (ed.), R. M.Miró‐Roig (ed.) and S.Zarzuela (ed.); Birkhäuser, Basel, 1998) 241-292. · Zbl 0892.00031
[52] T. W.Sederberg, R. N.Goldman and X.Wang, ‘Birational 2d free‐form deformation of degree \(1 \times n\)’, Comput. Aided Geom. Design44 (2016) 1-9. · Zbl 1418.65035
[53] T. W.Sederberg and J.Zheng, ‘Birational quadrilateral maps’, Comput. Aided Geom. Design32 (2015) 1-4. · Zbl 1419.14085
[54] A.Simis, ‘Cremona transformations and some related algebras’, J. Algebra280 (2004) 162-179. · Zbl 1067.14014
[55] A.Simis, B.Ulrich and W. V.Vasconcelos, ‘Jacobian dual fibrations’, Amer. J. Math.115 (1993) 47-75. · Zbl 0791.13007
[56] A.Simis, B.Ulrich and W. V.Vasconcelos, ‘Codimension, multiplicity and integral extensions’, Math. Proc. Cambridge Philos. Soc.130 (2001) 237-257. · Zbl 1096.13500
[57] A.Simis, B.Ulrich and W. V.Vasconcelos, ‘Rees algebras of modules’, Proc. Lond. Math. Soc. (3)87 (2003) 610-646. · Zbl 1099.13008
[58] A.Simis and W. V.Vasconcelos, ‘On the dimension and integrality of symmetric algebras’, Math. Z.177 (1981) 341-358. · Zbl 0439.13014
[59] A.Simis and W. V.Vasconcelos, ‘The syzygies of the conormal module’, Amer. J. Math.103 (1981) 203-224. · Zbl 0467.13009
[60] T. Stacks project authors, The stacks project, 2019.
[61] B.Sturmfels, Gröbner bases and convex polytopes, University Lecture Series 8 (American Mathematical Society, Providence, RI, 1996). · Zbl 0856.13020
[62] W. V.Vasconcelos, ‘On the equations of Rees algebras’, J. reine angew. Math.418 (1991) 189-218. · Zbl 0727.13002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.