×

Reduction numbers and multiplicities of multigraded structures. (English) Zbl 0931.13002

Let \(A\) be a local ring and let \(I_1,\dots,I_r\) be ideals in \(A\). The multi-Rees algebra with respect to \(I_1,\dots ,I_r\) is the ring \(R_A(I_1,\dots,I_r) = A[I_1t_1,\dots,I_rt_r]\) where \(t_1,\dots,t_r\) are indeterminates, and the multiform rings are the rings \(\text{gr}_A(I_1,\dots,I_r;I_i)= R_A(I_1,\dots,I_r)/I_iR_A(I_1,\dots,I_r)\), \(i=1,\dots,r\). We quote from the authors’ introduction:
The aim of this paper is twofold. First we want to relate the Cohen-Macaulay property of \(R_A(I_1,\dots,I_r)\) to the Cohen-Macaulay property of the ordinary Rees rings \(R_A(I_j)\) \((j = 1,\dots,r)\). Then we determine the multiplicities of multi-Rees and form rings. In particular, we ask when minimal multiplicity occurs.

MSC:

13A30 Associated graded rings of ideals (Rees ring, form ring), analytic spread and related topics
13C14 Cohen-Macaulay modules
13H15 Multiplicity theory and related topics
Full Text: DOI

References:

[1] Bhattacharya, P. B., The Hilbert function of two ideals, Proc. Camb. Phil. Soc., 53, 568-575 (1957) · Zbl 0080.02903
[2] Bruns, W.; Herzog, J., Cohen-Macaulay Rings (1993), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0788.13005
[3] Goto, S.; Huckaba, S., On graded rings associated with analytic deviation one ideals, Amer. J. Math., 116, 905-919 (1994) · Zbl 0803.13002
[4] Goto, S.; Watanabe, K., On graded rings I, J. Math. Soc. Japan, 30, 179-213 (1978) · Zbl 0371.13017
[5] Goto, S.; Watanabe, K., On graded rings II, Tokyo J. Math., 1, 237-260 (1978) · Zbl 0406.13007
[6] Hoa, L. T., Reduction numbers and Rees algebras of powers of an ideal, Proc. Amer. Math. Soc., 119, 415-422 (1994) · Zbl 0812.13004
[7] L. T. Hoa, Reduction numbers of equimultiple ideals; L. T. Hoa, Reduction numbers of equimultiple ideals · Zbl 0877.13002
[8] Herrmann, M.; Hyry, E.; Ribbe, J., On the Cohen-Macaulay and Gorenstein properties of multi-Rees algebras, Manuscripta. Math., 79, 343-377 (1993) · Zbl 0796.13003
[9] Herrmann, M.; Hyry, E.; Ribbe, J., On multi-Rees algebras, Math. Ann., 301, 249-279 (1995) · Zbl 0821.13001
[10] Herrmann, M.; Ikeda, S.; Orbanz, U., Equimultiplicity and Blowing Up (1988), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York · Zbl 0649.13011
[11] Hermann, M.; Ribbe, J.; Zarzuela, S., On the Gorenstein property of Rees and form rings of powers of ideals, Trans. Amer. Math. Soc., 342, 631-643 (1994) · Zbl 0818.13001
[12] D. Katz, S. Mandal, J. Verma, 1994, Hilbert functions of bigraded algebras, Proceedings of the First ICTP Workshop on Commutative Algebra 1992, World Scientific, London; D. Katz, S. Mandal, J. Verma, 1994, Hilbert functions of bigraded algebras, Proceedings of the First ICTP Workshop on Commutative Algebra 1992, World Scientific, London · Zbl 0927.13021
[13] Kleiman, S.; Thorup, A., A geometric theory of the Buchsbaum-Rim multiplicity, J. Algebra, 167, 168-231 (1994) · Zbl 0815.13012
[14] Katz, D.; Verma, J. K., Extended Rees algebras and mixed multiplicities, Math. Z., 202, 111-128 (1989) · Zbl 0655.13027
[15] Lipman, J., Cohen-Macaulayness in graded algebras, Math. Res. Lett., 1, 149-157 (1994) · Zbl 0844.13006
[16] Matsumura, N., Commutative Ring Theory (1986), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0603.13001
[17] Marley, T., The reduction number of an ideal and the local cohomology of the associated graded ring, Proc. Amer. Math. Soc., 117, 335-341 (1993) · Zbl 0772.13006
[18] Rees, D., Generalizations of reductions and mixed multiplicities, J. London Math. Soc. (2), 29, 397-414 (1984) · Zbl 0572.13005
[19] Sally, J., On the number of generators of powers of an ideal, Proc. Amer. Math. Soc., 53, 24-26 (1975) · Zbl 0313.13002
[20] Sally, J., On the associated graded ring of a local Cohen-Macaulay ring, J. Math Kyoto, 17, 19-21 (1977) · Zbl 0353.13017
[21] I. Swanson, 1992, Tight Closure, Joint Reductions, and Mixed Multiplicities, Purdue University; I. Swanson, 1992, Tight Closure, Joint Reductions, and Mixed Multiplicities, Purdue University
[22] Teissier, B., Cycles èvanescents, sections planes, et conditions de Whitney, Singularités à Cargése 1972, Astérisque, 7-8, 285-362 (1973) · Zbl 0295.14003
[23] Trung, N. V.; Ikeda, S., When is the Rees algebra Cohen-Macaulay?, Commun. Alg., 17, 2893-2922 (1989) · Zbl 0696.13015
[24] N. V. Trung, 1994, Reduction numbers,\(a\); N. V. Trung, 1994, Reduction numbers,\(a\)
[25] Valabrega, P.; Valla, G., Form rings and regular sequences, Nagoya Math. J., 72, 93-101 (1978) · Zbl 0362.13007
[26] Verma, J. K., Rees algebras with minimal multilicity, Commun. Algebra, 17, 2999-3024 (1989) · Zbl 0691.13024
[27] Verma, J. K., Joint reductions of complete ideals, Nagoya Math. J., 118, 155-163 (1990) · Zbl 0679.13012
[28] Verma, J. K., Joint reductions and Rees algebras, Math. Proc. Camb. Phil. Soc., 109, 335-343 (1991) · Zbl 0725.13001
[29] Verma, J. K., Multigraded Rees algebras and mixed multiplicities, Journal of Pure and Applied Algebra, 77, 219-228 (1992) · Zbl 0749.13014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.