×

Fluctuation and entropy in spectrally constrained random fields. (English) Zbl 1470.60136

Summary: We investigate the statistical properties of translation invariant random fields (including point processes) on Euclidean spaces (or lattices) under constraints on their spectrum or structure function. An important class of models that motivate our study are hyperuniform and stealthy hyperuniform systems, which are characterised by the vanishing of the structure function at the origin (resp., vanishing in a neighbourhood of the origin). We show that many key features of two classical statistical mechanical measures of randomness – namely, fluctuations and entropy, are governed only by some particular local aspects of their structure function. We obtain exponents for the fluctuations of the local mass in domains of growing size, and show that spatial geometric considerations play an important role – both the shape of the domain and the mode of spectral decay. In doing so, we unveil intriguing oscillatory behaviour of spatial correlations of local masses in adjacent box domains. We describe very general conditions under which we show that the field of local masses exhibit Gaussian asymptotics, with an explicitly described limit. We further demonstrate that stealthy hyperuniform systems with joint densities exhibit degeneracy in their asymptotic entropy per site. In fact, our analysis shows that entropic degeneracy sets in under much milder conditions than stealthiness, as soon as the structure function fails to be logarithmically integrable.

MSC:

60G60 Random fields
82B03 Foundations of equilibrium statistical mechanics

References:

[1] Aizenman, M.; Martin, PA, Structure of Gibbs states of one dimensional coulomb systems, Commun. Math. Phys., 78, 1, 99-116 (1980) · doi:10.1007/BF01941972
[2] Aizenman, M., Martin, P.A.: Structure of Gibbs states of one dimensional Coulomb systems. Commun. Math. Phys. 78(1), 99-116 (1980)
[3] Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, Inc., New York (1992). Reprint of the 1972 edition
[4] Baake, M.; Birkner, M.; Moody, RV, Diffraction of stochastic point sets: explicitly computable examples, Commun. Math. Phys., 293, 3, 611 (2010) · Zbl 1197.82053 · doi:10.1007/s00220-009-0942-x
[5] Beck, J., Chen, W.L.: Irregularities of Distribution, Volume 89 of Cambridge Tracts in Mathematics (1987) · Zbl 0617.10039
[6] Beck, J., Irregularities of distribution. I, Acta Math., 159, 1-49 (1987) · Zbl 0631.10034 · doi:10.1007/BF02392553
[7] Burcaw, LM; Fieremans, E.; Novikov, DS, Mesoscopic structure of neuronal tracts from time-dependent diffusion, NeuroImage, 114, 18-37 (2015) · doi:10.1016/j.neuroimage.2015.03.061
[8] Bufetov, AI; Qiu, Y., \(J\)-Hermitian determinantal point processes: balanced rigidity and balanced Palm equivalence, Math. Ann., 371, 1-2, 127-188 (2018) · Zbl 1392.60046 · doi:10.1007/s00208-017-1627-y
[9] Buckley, J.; Sodin, M., Fluctuations of the increment of the argument for the Gaussian entire function, J. Stat. Phys., 168, 2, 300-330 (2017) · Zbl 1373.60068 · doi:10.1007/s10955-017-1813-z
[10] Bufetov, AI, Rigidity of determinantal point processes with the airy, the Bessel and the gamma kernel, Bull. Math. Sci., 6, 1, 163-172 (2016) · Zbl 1335.60075 · doi:10.1007/s13373-015-0080-z
[11] Chertkov, E.; DiStasio, RA Jr; Zhang, G.; Car, R.; Torquato, S., Inverse design of disordered stealthy hyperuniform spin chains, Phys. Rev. B, 93, 6, 064201 (2016) · doi:10.1103/PhysRevB.93.064201
[12] Costin, O.; Lebowitz, JL, Gaussian fluctuation in random matrices, Phys. Rev. Lett., 75, 1, 69 (1995) · doi:10.1103/PhysRevLett.75.69
[13] Dorlas, T.C., Rebenko, A.L., Savoie, B.: Correlation of clusters: partially truncated correlation functions and their decay. arXiv preprint arXiv:1811.12342 (2018) · Zbl 1434.82041
[14] Degl’Innocenti, R., Shah, Y.D., Masini, L., Ronzani, A., Pitanti, A., Ren, Y., Jessop, D.S., Tredicucci, A., Beere, H.E., Ritchie, D.A.: Thz quantum cascade lasers based on a hyperuniform design. In: Quantum Sensing and Nanophotonic Devices XII, vol. 9370, p. 93700A. International Society for Optics and Photonics (2015)
[15] Edwards, SF; Lenard, A., Exact statistical mechanics of a one-dimensional system with coulomb forces. II. The method of functional integration, J. Math. Phys., 3, 4, 778-792 (1962) · Zbl 0107.23201 · doi:10.1063/1.1724281
[16] Epstein, CL, Introduction to the Mathematics of Medical Imaging (2008), Philadelphia: Society for Industrial and Applied Mathematics (SIAM), Philadelphia · Zbl 1305.92002 · doi:10.1137/9780898717792
[17] Folland, GB, A Course in Abstract Harmonic Analysis. Studies in Advanced Mathematics (1995), Boca Raton: CRC Press, Boca Raton · Zbl 0857.43001
[18] Florescu, M.; Torquato, S.; Steinhardt, PJ, Designer disordered materials with large, complete photonic band gaps, Proc. Nat. Acad. Sci., 106, 49, 20658-20663 (2009) · doi:10.1073/pnas.0907744106
[19] Ghosh, S., Determinantal processes and completeness of random exponentials: the critical case, Probab. Theory Relat. Fields, 163, 3-4, 643-665 (2015) · Zbl 1334.60083 · doi:10.1007/s00440-014-0601-9
[20] Ghosh, S.; Lebowitz, J., Number rigidity in superhomogeneous random point fields, J. Stat. Phys., 166, 3-4, 1016-1027 (2017) · Zbl 1362.60047 · doi:10.1007/s10955-016-1633-6
[21] Ghosh, S.; Lebowitz, JL, Fluctuations, large deviations and rigidity in hyperuniform systems: a brief survey, Indian J. Pure Appl. Math., 48, 4, 609-631 (2017) · Zbl 1390.60104 · doi:10.1007/s13226-017-0248-1
[22] Ghosh, S.; Lebowitz, JL, Generalized stealthy hyperuniform processes: maximal rigidity and the bounded holes conjecture, Commun. Math. Phys., 363, 1, 97-110 (2018) · Zbl 1401.60096 · doi:10.1007/s00220-018-3226-5
[23] Glasner, E., Ergodic Theory via Joinings. Mathematical Surveys and Monographs (2003), Providence: American Mathematical Society, Providence · Zbl 1038.37002 · doi:10.1090/surv/101
[24] Goldstein, S.; Lebowitz, JL; Speer, ER, Large deviations for a point process of bounded variability, Markov Process. Relat. Fields, 12, 2, 235-256 (2006) · Zbl 1142.60018
[25] Ghosh, S.; Peres, Y., Rigidity and tolerance in point processes: Gaussian zeros and Ginibre eigenvalues, Duke Math. J., 166, 10, 1789-1858 (2017) · Zbl 1405.60067 · doi:10.1215/00127094-2017-0002
[26] Hexner, D.; Chaikin, PM; Levine, D., Enhanced hyperuniformity from random reorganization, Proc. Nat. Acad. Sci., 114, 17, 4294-4299 (2017) · doi:10.1073/pnas.1619260114
[27] Hough, B.J., Krishnapur, M., Peres, Y., Virág, B.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes. University Lecture Series, vol. 51. American Mathematical Society, Providence (2009) · Zbl 1190.60038
[28] Hexner, D., Hyperuniformity of critical absorbing states, Phys. Rev. Lett., 114, 11, 110602 (2015) · doi:10.1103/PhysRevLett.114.110602
[29] Haberko, J.; Muller, N.; Scheffold, F., Direct laser writing of three-dimensional network structures as templates for disordered photonic materials, Phys. Rev. A, 88, 4, 043822 (2013) · doi:10.1103/PhysRevA.88.043822
[30] Ibragimov, IA, A theorem of Gabor Szegö, Mat. Zametki, 3, 693-702 (1968) · Zbl 0186.12201
[31] Jiao, Y.; Lau, T.; Hatzikirou, H.; Meyer-Hermann, M.; Corbo, JC; Torquato, S., Avian photoreceptor patterns represent a disordered hyperuniform solution to a multiscale packing problem, Phys. Rev. E, 89, 2, 022721 (2014) · doi:10.1103/PhysRevE.89.022721
[32] Jancovici, B.; Lebowitz, JL; Manificat, G., Large charge fluctuations in classical coulomb systems, J. Stat. Phys., 72, 3-4, 773-787 (1993) · Zbl 1101.82307 · doi:10.1007/BF01048032
[33] Jiao, Y.; Torquato, S., Maximally random jammed packings of platonic solids: hyperuniform long-range correlations and isostaticity, Phys. Rev. E, 84, 4, 041309 (2011) · doi:10.1103/PhysRevE.84.041309
[34] Katznelson, Y., An Introduction to Harmonic Analysis (2004), Cambridge: Cambridge University Press, Cambridge · Zbl 0169.17902 · doi:10.1017/CBO9781139165372
[35] Kiro, A., Nishry, A: Rigidity for zero sets of Gaussian entire functions. Electron. Commun. Probab. 24, 1-9 (2019) · Zbl 1418.30002
[36] Lebowitz, JL, Charge fluctuations in coulomb systems, Phys. Rev. A, 27, 3, 1491 (1983) · doi:10.1103/PhysRevA.27.1491
[37] Linnik: , I. J.: a multidimensional analogue of G. Szegho’s limit theorem. Izv. Akad. Nauk SSSR Ser. Mat. 39(6), 1393-1403, 1439 (1975) · Zbl 0329.41022
[38] Lukacs, E.: Characteristic functions. Griffin’s Statistical Monographs & Courses, No. 5. Hafner Publishing Co., New York (1960) · Zbl 0087.33605
[39] Marcotte, E., Stillinger, F., Torquato, S.: Nonequilibrium static growing length scales in supercooled liquids on approaching the glass transition. J. Chem. Phys. 138 (2013)
[40] Martin, PA; Yalcin, T., The charge fluctuations in classical coulomb systems, J. Stat. Phys., 22, 4, 435-463 (1980) · doi:10.1007/BF01012866
[41] Nazarov, F.; Sodin, M., Correlation functions for random complex zeroes: strong clustering and local universality, Commun. Math. Phys., 310, 1, 75-98 (2012) · Zbl 1238.60059 · doi:10.1007/s00220-011-1397-4
[42] Simon, B.: The sharp form of the strong Szego theorem. In: Geometry, Spectral Theory, Groups, and Dynamics, Volume 387 of Contemporary Mathematics, pp. 253-275. American Mathematical Society, Providence (2005) · Zbl 1093.47032
[43] Szegő, G.: On certain Hermitian forms associated with the Fourier series of a positive function. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (Tome Supplémentaire), 228-238 (1952) · Zbl 0048.04203
[44] Torquato, S., Random Heterogeneous Materials: Microstructure and Macroscopic Properties (2002), New York: Springer, New York · Zbl 0988.74001 · doi:10.1007/978-1-4757-6355-3
[45] Torquato, S., Stillinger, F.H.: Local density fluctuations, hyperuniformity, and order metrics. Phys. Rev. E 68(4), 041113, (2003)
[46] Torquato, S., Zhang, G., Stillinger, F.H.: Ensemble theory for stealthy hyperuniform disordered ground states. Phys. Rev. X 5(2), 021020 (2015)
[47] Zhang, G., Stillinger, F.H., Torquato, S.: Ground states of stealthy hyperuniform potentials: I. Entropically favored configurations. Phys. Rev. E 92(2), 022119 (2015)
[48] Zhang, G., Stillinger, F.H., Torquato, S.: Ground states of stealthy hyperuniform potentials. II. Stacked-slider phases. Phys. Rev. E 92(2), 022120 (2015)
[49] Zhang, G.; Stillinger, FH, Transport, geometrical, and topological properties of stealthy disordered hyperuniform two-phase systems, J. Chem. Phys., 145, 24, 244109 (2016) · doi:10.1063/1.4972862
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.