×

Diffraction of stochastic point sets: Explicitly computable examples. (English) Zbl 1197.82053

Summary: Stochastic point processes relevant to the theory of long-range aperiodic order are considered that display diffraction spectra of mixed type, with special emphasis on explicitly computable cases together with a unified approach of reasonable generality. The latter is based on the classical theory of point processes and the Palm distribution. Several pairs of autocorrelation and diffraction measures are discussed which show a duality structure analogous to that of the Poisson summation formula for lattice Dirac combs.

MSC:

82B31 Stochastic methods applied to problems in equilibrium statistical mechanics
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
60K40 Other physical applications of random processes

References:

[1] Ataman Y.: On positive definite measures. Monatsh. Math. 79, 265–272 (1975) · Zbl 0309.43005 · doi:10.1007/BF01647327
[2] Baake, M.: Diffraction of weighted lattice subsets. Canad. Math. Bulletin 45, 483–498 (2002), arXiv:math.MG/0106111 · Zbl 1161.52309 · doi:10.4153/CMB-2002-050-2
[3] Baake, M., Frettlöh, D., Grimm, U.: A radial analogue of Poisson’s summation formula with applications to powder diffraction and pinwheel patterns. J. Geom. Phys. 57, 1331–1343 (2007), arXiv:math.SP/ 0610408 · Zbl 1185.37029 · doi:10.1016/j.geomphys.2006.10.009
[4] Baake, M., Höffe, M.: Diffraction of random tilings: Some rigorous results. J. Stat. Phys. 99, 219–261 (2000), arXiv:math-ph/9904005 · Zbl 1101.82345 · doi:10.1023/A:1018648707744
[5] Baake, M., Lenz, D.: Deformation of Delone dynamical systems and pure point diffraction. J. Fourier Anal. Appl. 11, 125–150 (2005), arXiv:math.DS/0404155 · Zbl 1084.37502 · doi:10.1007/s00041-005-4021-1
[6] Baake, M., Lenz, D., Moody, R.V.: Characterisation of models sets by dynamical systems. Erg. Th. & Dyn. Syst. 27, 341–382 (2007), arXiv:math.DS/0511648 · Zbl 1114.82022 · doi:10.1017/S0143385706000800
[7] Baake, M., Moody, R.V.: Diffractive point sets with entropy. J. Phys. A: Math. Gen. 31, 9023–9038 (1998), arXiv:math-ph/9809002 · Zbl 0954.82009 · doi:10.1088/0305-4470/31/45/003
[8] Baake, M., Moody, R.V.: Weighted Dirac combs with pure point diffraction. J. Reine Angew. Math. (Crelle) 573, 61–94 (2004), arXiv:math.MG/0203030 · Zbl 1188.43008 · doi:10.1515/crll.2004.064
[9] Baake, M., Moody, R.V., Pleasants, P.A.B.: Diffraction from visible lattice points and k-th power free integers. Discr. Math. 221, 3–42 (2000), arXiv:math.MG/9906132 · Zbl 1079.52013 · doi:10.1016/S0012-365X(99)00384-2
[10] Baake, M., Sing, B.: Diffraction spectrum of lattice gas models above Tc. Lett. Math. Phys. 68, 165–173 (2004), arXiv:math-ph/0405064 · Zbl 1172.82300 · doi:10.1023/B:MATH.0000045555.93532.6d
[11] Baake, M., Zint, N.: Absence of singular continuous diffraction for discrete multi-component particle models. J. Stat. Phys. 130, 727–740 (2008), arXiv:0709.2061(math-ph) · Zbl 1214.82113 · doi:10.1007/s10955-007-9445-3
[12] Berberian, S.K.: Measure and Integration. New York: Chelsea, 1965 · Zbl 0126.08001
[13] Berg, C., Forst, G.: Potential Theory on Locally Compact Abelian Groups. Berlin: Springer, 1975 · Zbl 0308.31001
[14] Blumenthal, R.M., Getoor, R.K.: Markov Processes and Potential Theory. New York: Academic Press, 1968 · Zbl 0169.49204
[15] Bramson M., Cox J.T., Greven A.: Invariant measures of critical spatial branching processes in high dimensions. Ann. Probab. 25, 56–70 (1997) · Zbl 0882.60091 · doi:10.1214/aop/1024404278
[16] Córdoba A.: Dirac combs. Lett. Math. Phys. 17, 191–196 (1989) · Zbl 0681.42013 · doi:10.1007/BF00401584
[17] Cowley, J.M.: Diffraction Physics. 3rd ed., Amsterdam: North-Holland, 1995
[18] Daley, D.D., Vere-Jones, D.: An Introduction to the Theory of Point Processes. New York: Springer, 1988 · Zbl 0657.60069
[19] Daley, D.D., Vere-Jones, D.: An Introduction to the Theory of Point Processes I: Elementary Theory and Methods. 2nd ed., 2nd corr. printing, New York: Springer, 2005 · Zbl 1026.60061
[20] Daley, D.D., Vere-Jones, D.: An Introduction to the Theory of Point Processes II: General Theory and Structure. 2nd ed., New York: Springer, 2008 · Zbl 1159.60003
[21] Deng, X., Moody, R.V.: Dworkin’s argument revisited: point processes, dynamics, diffraction, and correlations. J. Geom. Phys. 58, 506–541 (2008), arXiv:0712.3287(math.DS) · Zbl 1145.37007 · doi:10.1016/j.geomphys.2007.12.006
[22] Dieudonné, J.: Treatise on Analysis. Vol. II, 2nd ed., New York: Academic Press, 1976 · Zbl 0315.46001
[23] Enter A.C.D., Miekisz J.: How should one define a (weak) crystal? J. Stat. Phys. 66, 1147–1153 (1992) · Zbl 0943.82584 · doi:10.1007/BF01055722
[24] Etemadi N.: An elementary proof of the strong law of large numbers. Z. Wahrsch. verw. Gebiete 55, 119–122 (1981) · Zbl 0438.60027 · doi:10.1007/BF01013465
[25] Feller, W.: An Introduction to Probability Theory and Its Applications. Vol. II, 2nd ed., New York: Wiley, 1972 · Zbl 0077.12201
[26] Gil de Lamadrid, J., Argabright, L.N.: Almost Periodic Measures. Memoirs AMS, Vol. 65, no. 428, Providence, RI: Amer. Math. Soc., 1990 · Zbl 0719.43006
[27] Gnedenko, B.V.: Theory of Probability. 6th ed., Amsterdam: CRC Press, 1998 · Zbl 0191.46702
[28] Goueré, J.-B.: Diffraction and Palm measure of point processes. Comptes Rendus Acad. Sci. (Paris) 342, 141–146 (2003), arXiv:math.PR/0208064
[29] Goueré, J.-B.: Quasicrystals and almost periodicity. Commun. Math. Phys. 255, 655–681 (2005), arXiv:math-ph/0212012 · Zbl 1081.52020 · doi:10.1007/s00220-004-1271-8
[30] Guinier, A.: X-Ray Diffraction in Crystals, Imperfect Crystals and Amorphous Bodies. Reprint, New York: Dover, 1994
[31] Gorostiza L.G., Wakolbinger A.: Persistence criteria for a class of branching particle systems in continuous time. Ann. Probab. 19, 266–288 (1991) · Zbl 0732.60093 · doi:10.1214/aop/1176990544
[32] Hof A.: On diffraction by aperiodic structures. Commun. Math. Phys. 169, 25–43 (1995) · Zbl 0821.60099 · doi:10.1007/BF02101595
[33] Hof A.: Diffraction by aperiodic structures at high temperatures. J. Phys. A: Math. Gen. 28, 57–62 (1995) · Zbl 0853.60090 · doi:10.1088/0305-4470/28/1/012
[34] Höffe, M.: Diffraction of the dart-rhombus random tiling. Mat. Science Eng. 294–296, 373–376 (2000), arXiv:math-ph/9911014
[35] Höffe, M., Baake, M.: Surprises in diffuse scattering. Z. Kristallogr. 215, 441–444 (2000), arXiv:math-ph/0004022 · doi:10.1524/zkri.2000.215.8.441
[36] Kallenberg, O.: Random Measures. 3rd ed., Berlin: Akademie-Verlag, 1983 · Zbl 0544.60053
[37] Karr, A.F.: Point Processes and Their Statistical Inference. 2nd ed., New York: Dekker, 1991 · Zbl 0733.62088
[38] Kerstan, J., Matthes, K., Mecke, J.: Unbegrenzt teilbare Punktprozesse. Berlin: Akademie-Verlag, 1974
[39] Kramer P., Neri R.: On periodic and non-periodic space fillings of \({\mathbb{E}^m}\) obtained by projection. Acta Cryst. A40, 580–587 (1984) · Zbl 1176.52010
[40] Külske, C.: Universal bounds on the selfaveraging of random diffraction measures. Probab. Th. Rel. Fields 126, 29–50 (2003), arXiv:math-ph/0109005 · Zbl 1025.78009 · doi:10.1007/s00440-003-0261-7
[41] Külske C.: Concentration inequalities for functions of Gibbs fields with application to diffraction and random Gibbs measures. Commun. Math. Phys. 239, 29–51 (2003) · Zbl 1023.60080 · doi:10.1007/s00220-003-0841-5
[42] Lenz D.: Continuity of eigenfunctions of uniquely ergodic dynamical systems and intensity of Bragg peaks. Commun. Math. Phys. 287, 225–258 (2009), arXiv:math-ph/0608026) · Zbl 1178.37011 · doi:10.1007/s00220-008-0594-2
[43] Lenz D., Strungaru N.: Pure point spectrum for measure dynamical systems on locally compact Abelian groups. J. Math. Pures Appl. 92, 323–341 (2009), arXiv:0704.2498) · Zbl 1178.37008 · doi:10.1016/j.matpur.2009.05.013
[44] Moody, R.V.: Model sets: A survey. In: From Quasicrystals to More Complex Systems, eds. F. Axel, F. Dénoyer, J.P. Gazeau, Les Ulis: EDP Sciences/Berlin: Springer, 2000, pp. 145–166, arXiv:math.MG/ 0002020
[45] Moody R.V.: Uniform distribution in model sets. Can. Math. Bull 45, 123–130 (2002) · Zbl 1007.52013 · doi:10.4153/CMB-2002-015-3
[46] Nguyen X.X., Zessin H.: Ergodic theorems for spatial processes. Z. Wahrsch. verw. Gebiete 48, 133–158 (1979) · Zbl 0397.60080 · doi:10.1007/BF01886869
[47] Penrose R.: The role of aesthetics in pure and applied mathematical research. Bull. Inst. Math. Appl. 10, 266–271 (1974)
[48] Pinsky, M.A.: Introduction to Fourier Analysis and Wavelets. Pacific Grove, CA: Brooks/Cole, 2002 · Zbl 1065.42001
[49] Radin, C.: Aperiodic tilings, ergodic theory, and rotations. In: The Mathematics of Long-Range Aperiodic Order, ed. R.V. Moody, NATO-ASI Series C 489, Dordrecht: Kluwer, 1997, pp. 499–519 · Zbl 0889.52028
[50] Reed, M., Simon, B.: Methods of Modern Mathematical Physics I: Functional Analysis. 2nd ed., San Diego: Academic Press, 1980 · Zbl 0459.46001
[51] Rudin, W.: Real and Complex Analysis. 3rd ed., New York: McGraw Hill, 1987 · Zbl 0925.00005
[52] Rudin, W.: Fourier Analysis on Groups. reprint, New York: Wiley, 1990 · Zbl 0698.43001
[53] Shechtman D., Blech I., Gratias D., Cahn J.W.: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 183–185 (1984) · doi:10.1103/PhysRevLett.53.1951
[54] Schlottmann, M.: Cut-and-project sets in locally compact Abelian groups. In: Quasicrystals and Discrete Geometry. ed. J. Patera, Fields Institute Monographs, Vol. 10, Providence, RI: Amer. Math. Soc., 1998, pp. 247–264 · Zbl 0912.22002
[55] Schlottmann, M.: Generalized model sets and dynamical systems. In: Directions in Mathematical Quasicrystals, eds. M. Baake, R.V. Moody, CRM Monograph Series, Vol. 13, Providence, RI: Amer. Math. Soc., 2000, pp. 143–159 · Zbl 0984.37005
[56] Steurer W. et al.: What is a crystal? Z. Kristallogr. 222, 308–319 (2007) · doi:10.1524/zkri.2007.222.6.308
[57] Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and its Applications. Berlin: Akademie-Verlag, 1987 · Zbl 0622.60019
[58] Stoyan D., Stoyan H.: On one of Matérn’s hard-core point process models. Math. Nachr. 122, 205–214 (1985) · Zbl 0578.60047 · doi:10.1002/mana.19851220121
[59] Strungaru N.: Almost periodic measures and long-range order in Meyer sets. Discr. Comput. Geom. 33, 483–505 (2005) · Zbl 1062.43008 · doi:10.1007/s00454-004-1156-9
[60] Urban K., Feuerbacher M.: Structurally complex alloy phases. J. Non-Cryst. Solids 334 & 335, 143–150 (2004) · doi:10.1016/j.jnoncrysol.2003.11.029
[61] Ushakov, N.G.: Selected Topics in Characteristic Functions. Utrecht: Brill Academic Publishers, 1999 · Zbl 0999.60500
[62] Walters, P.: An Introduction to Ergodic Theory. reprint, New York: Springer, 2000 · Zbl 0958.28011
[63] Welberry, T.R.: Diffuse X-Ray Scattering and Models of Disorder. Oxford: Clarendon Press, 2004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.