×

Correlation of clusters: partially truncated correlation functions and their decay. (English) Zbl 1434.82041

Summary: In this article, we investigate partially truncated correlation functions (PTCF) of infinite continuous systems of classical point particles with pair interaction. We derive Kirkwood-Salsburg-type equations for the PTCF and write the solutions of these equations as a sum of contributions labeled by certain forest graphs, the connected components of which are tree graphs. We generalize the method developed by R. A. Minlos and S. K. Poghosyan [Theor. Math. Phys. 31, No. 2, 199–213 (1977)] in the case of truncated correlations. These solutions make it possible to derive strong cluster properties for PTCF, which were obtained earlier for lattice spin systems.
©2020 American Institute of Physics

MSC:

82C05 Classical dynamic and nonequilibrium statistical mechanics (general)

References:

[1] Ornstein, L. S.; Zernike, F., Bemerkung zur Arbeit von Herrn K. C. Kar: Die Molekularzerstreuung des Lichtes beim kritischen Zustande, Phys. Z., 27, 761-763 (1926) · JFM 52.0952.04
[2] Yvon, J., La théorie statistique des fluides et l’équation d’état (1935), Hermann & Cie: Hermann & Cie, Paris
[3] Bogolyubov, N. N.; de Boer, J.; Uhlenbeck, G. E., Problems of a Dynamical Theory in Statistical Physics (1962), North Holland: North Holland, Amsterdam · Zbl 0116.45101
[4] Kirkwood, J. G., The statistical mechanical theory of transport processes. I. General theory, 14, 180 (1946), 10.1063/1.1724117; Kirkwood, J. G., The statistical mechanical theory of transport processes. I. General theory, 14, 180 (1946), 10.1063/1.1746292; · JFM 13.0849.01
[5] Born, M.; Green, H. S., A General Kinetic Theory of Liquids (1949), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 0038.13602
[6] Penrose, O., Convergence of fugacity expansions for fluids and lattice gases, J. Math. Phys., 4, 10, 1312-1320 (1963) · Zbl 0122.46205 · doi:10.1063/1.1703906
[7] Ruelle, D., Statistical Mechanics. Rigorous Results (1969), W.A. Benjamin, Inc.: W.A. Benjamin, Inc., New York, Amsterdam · Zbl 0177.57301
[8] Bogolyubov, N. N.; Petrina, D. Ya.; Khatset, B. I., Mathematical description of the equilibrium state of classical systems on the basis of the canonical ensemble, Teoret. Mat. Fiz., 1, 2, 251-274 (1969) · doi:10.1007/bf01028046
[9] Lebowitz, J. L., Bounds on the correlations and analyticity properties of ferromagnetic Ising spin systems, Commun. Math. Phys., 28, 4, 313-321 (1972) · doi:10.1007/bf01645632
[10] Duneau, M.; Iagolnitzer, D.; Souillard, B., Decrease properties of truncated correlation functions and analyticity properties for classical lattices and continuous systems, Commun. Math. Phys., 31, 3, 191-208 (1973) · Zbl 1125.82302 · doi:10.1007/bf01646265
[11] Duneau, M.; Iagolnitzer, D.; Souillard, B., Strong cluster properties for classical systems with finite range interaction, Commun. Math. Phys., 35, 4, 307-320 (1974) · doi:10.1007/bf01646352
[12] Duneau, M.; Souillard, B., Cluster properties of lattices and continuous systems, Commun. Math. Phys., 47, 2, 155-166 (1976) · doi:10.1007/bf01608373
[13] Iagolnitzer, D.; Souillard, B., On the analyticity in the potential in classical statistical mechanics, Commun. Math. Phys., 60, 2, 131-152 (1978) · doi:10.1007/bf01609445
[14] Minlos, R. A.; Poghosyan, S. K., Estimates of Ursell functions, group functions, and their derivatives, Teoret. Mat. Fiz., 31, 2, 199-213 (1977) · doi:10.1007/bf01036671
[15] Ruelle, D., Superstable interactions in classical statistical mechanics, Commun. Math. Phys., 18, 2, 127-159 (1970) · Zbl 0198.31101 · doi:10.1007/bf01646091
[16] Minlos, R. A., Lectures on statistical physics, Usp. Mat. Nauk., 23, 1, 133-190 (1968) · Zbl 0165.58501 · doi:10.1070/rm1968v023n01abeh001235
[17] Lenard, A., States of classical statistical mechanical systems of infinitely many particles. I, 59, 3, 219-239 (1975), 10.1007/bf00251601; Lenard, A., States of classical statistical mechanical systems of infinitely many particles. I, 59, 3, 219-239 (1975), 10.1007/bf00251602;
[18] Kondratiev, Yu. G.; Kuna, T., Harmonic analysis on configuration space I: General theory, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 5, 2, 201-233 (2002) · Zbl 1134.82308 · doi:10.1142/s0219025702000833
[19] Kondratiev, Yu. G.; Kutoviy, O. V., On the metrical properties of the configuration space, Math. Nachr., 279, 7, 774-783 (2006) · Zbl 1099.54026 · doi:10.1002/mana.200310392
[20] Gel’fand, I. M.; Vilenkin, N. Ya., Generalized Functions. Volume 4: Applications of Harmonic Analysis (1968), Academic Press: Academic Press, New York, London
[21] Rebenko, A. L., A new proof of Ruelle’s superstability bounds, J. Stat. Phys., 91, 3-4, 815-826 (1998) · Zbl 0921.60095 · doi:10.1023/a:1023098131878
[22] Petrenko, S. N.; Rebenko, A. L., Superstable criterion and superstable bounds for infinite range interaction I: Two-body potentials, Methods Funct. Anal. Topol., 13, 1, 50-61 (2007) · Zbl 1150.82001
[23] Petrenko, S. N.; Rebenko, A. L., Superstable criterion and superstable bounds for infinite range interaction II: Many-body potentials, Proc. Inst. Math. NASU, 6, 1, 191-208 (2009) · Zbl 1199.82006
[24] Last, G.; Penrose, M., Lectures on the Poisson Process (2018), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 1392.60004
[25] Dorlas, T. C., Statistical Mechanics: Fundamentals and Model Solutions (1999), Institute of Physics Publishing: Institute of Physics Publishing, Bristol, Philadelphia · Zbl 0932.82001
[26] Rebenko, A. L.; Tertychnyi, M. V., On stability, superstability and strong superstability of classical systems of statistical mechanics, Methods Funct. Anal. Topol., 14, 3, 287-296 (2008) · Zbl 1164.41025
[27] Kondratiev, Yu. G.; Pasurek, T.; Röckner, M., Gibbs measures of continuous systems: An analytic approach, Rev. Math. Phys., 24, 10, 1250026 (2012) · Zbl 1267.82029 · doi:10.1142/s0129055x12500262
[28] Albeverio, S.; Kondratiev, Yu. G.; Röckner, M., Analysis and geometry on configuration spaces, J. Funct. Anal., 154, 2, 444-500 (1998) · Zbl 0914.58028 · doi:10.1006/jfan.1997.3183
[29] Ito, Y., Generalized Poisson functionals, Probab. Theor. Relat. Fields, 77, 1, 1-28 (1988) · Zbl 0617.60035 · doi:10.1007/bf01848128
[30] Simon, B., The P(ϕ)_2 Euclidean (Quantum) Field Theory (1974), Princeton University Press: Princeton University Press, Princeton · Zbl 1175.81146
[31] Berezansky, Yu. M.; Kondratiev, Yu. G., Spectral Methods in Infinite-Dimensional Analysis (1995), Kluwer Academic Publishers: Kluwer Academic Publishers, Dordrecht · Zbl 0853.43014
[32] Malyshev, V. A.; Minlos, R. A., Gibbs Random Fields: Cluster Expansions (1991), Kluwer Academic Publishers: Kluwer Academic Publishers, Dordrecht, Boston, London · Zbl 0731.60099
[33] Ruelle, D., Cluster property of the correlation functions of classical gases, Rev. Mod. Phys., 36, 2, 580-583 (1964) · doi:10.1103/revmodphys.36.580
[34] Penrose, O.; Bak, T. A., Convergence of fugacity expansions for classical systems, Statistical Mechanics: Foundations and Applications (1967), W.A. Benjamin, Inc.: W.A. Benjamin, Inc., New York · Zbl 0169.57401
[35] Brydges, D.; Federbush, P., A new form of the Mayer expansion in classical statistical mechanics, J. Math. Phys., 19, 10, 2064-2067 (1978) · doi:10.1063/1.523586
[36] Morais, T.; Procacci, A.; Scoppola, B., On Lennard-Jones type potentials and hard-core potentials with an attractive tail, J. Stat. Phys., 157, 1, 17-39 (2014) · Zbl 1302.82106 · doi:10.1007/s10955-014-1067-y
[37] Poghosyan, S.; Ueltschi, D., Abstract cluster expansion with applications to statistical systems, J. Math. Phys., 50, 053509 (2009) · Zbl 1187.82009 · doi:10.1063/1.3124770
[38] Bricmont, J.; Kuroda, K.; Lebowitz, J. L., First order phase transitions in lattice and continuous systems: Extension of Pirogov-Sinai theory, Commun. Math. Phys., 101, 4, 501-538 (1985) · Zbl 0573.60098 · doi:10.1007/bf01210743
[39] Fernandez, R.; Procacci, A., Cluster expansion for abstract polymer models. New bounds from an old approach, Commun. Math. Phys., 274, 1, 123-140 (2007) · Zbl 1206.82148 · doi:10.1007/s00220-007-0279-2
[40] Dorlas, T. C.; Rebenko, A. L.; Savoie, B., A combinatorial identity
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.