×

Composite images of Galois for elliptic curves over \(\mathbb {Q}\) and entanglement fields. (English) Zbl 1470.11154

Summary: Let \( E\) be an elliptic curve defined over \( \mathbb {Q}\) without complex multiplication. For each prime \( \ell \), there is a representation \( \rho _{E,\ell }\colon \mathrm{Gal}(\overline {\mathbb {Q}}/\mathbb {Q}) \rightarrow \mathrm{GL}_2(\mathbb {Z}/\ell \mathbb {Z})\) that describes the Galois action on the \( \ell \)-torsion points of \( E\). Building on recent work of J. Rouse and D. Zureick-Brown [Res. Number Theory 1, Paper No. 12, 34 p. (2015; Zbl 1397.11095)] and D. Zywina [Bull. Lond. Math. Soc. 42, No. 5, 811–826 (2010; Zbl 1221.11136)], we find models for composite level modular curves whose rational points classify elliptic curves over \( \mathbb {Q}\) with simultaneously non-surjective, composite images of Galois. We also provably determine the rational points on almost all of these curves. Finally, we give an application of our results to the study of entanglement fields.

MSC:

11G05 Elliptic curves over global fields
11D45 Counting solutions of Diophantine equations
11G18 Arithmetic aspects of modular and Shimura varieties
11F80 Galois representations

References:

[1] Adelmann, Clemens, The Decomposition of Primes in Torsion Point Fields, Lecture Notes in Mathematics 1761, vi+142 pp. (2001), Springer-Verlag, Berlin · Zbl 1019.11031 · doi:10.1007/b80624
[2] Balakrishnan, Jennifer S.; Dogra, Netan; M{\"u}ller, J. Steffen; Tuitman, Jan; Vonk, Jan, Explicit {C}habauty-{K}im for the split {C}artan modular curve of level {\(13\)}, Preprint (November 15, 2017)
[3] Banwait, Barinder S.; Cremona, John E., Tetrahedral elliptic curves and the local-global principle for isogenies, Algebra Number Theory, 8, 5, 1201-1229 (2014) · Zbl 1303.11066 · doi:10.2140/ant.2014.8.1201
[4] Baran, Burcu, An exceptional isomorphism between modular curves of level 13, J. Number Theory, 145, 273-300 (2014) · Zbl 1300.11055 · doi:10.1016/j.jnt.2014.05.017
[5] Bosma, Wieb; Cannon, John; Playoust, Catherine, The Magma algebra system. I. The user language, J. Symbolic Comput., 24, 3-4, 235-265 (1997) · Zbl 0898.68039 · doi:10.1006/jsco.1996.0125
[6] Brau, Julio; Jones, Nathan, Elliptic curves with \(2\)-torsion contained in the \(3\)-torsion field, Proc. Amer. Math. Soc., 144, 3, 925-936 (2016) · Zbl 1333.11050 · doi:10.1090/proc/12786
[7] Bruin, Nils, Chabauty methods using elliptic curves, J. Reine Angew. Math., 562, 27-49 (2003) · Zbl 1135.11320 · doi:10.1515/crll.2003.076
[8] Bruin, Nils, The arithmetic of Prym varieties in genus 3, Compos. Math., 144, 2, 317-338 (2008) · Zbl 1166.11022 · doi:10.1112/S0010437X07003314
[9] Bruin, Nils; Stoll, Michael, The Mordell-Weil sieve: proving non-existence of rational points on curves, LMS J. Comput. Math., 13, 272-306 (2010) · Zbl 1278.11069 · doi:10.1112/S1461157009000187
[10] Chabauty, Claude, Sur les points rationnels des courbes alg\'{e}briques de genre sup\'{e}rieur \`“a l”unit\'{e}, C. R. Acad. Sci. Paris, 212, 882-885 (1941) · Zbl 0025.24902
[11] Coleman, Robert F., Effective Chabauty, Duke Math. J., 52, 3, 765-770 (1985) · Zbl 0588.14015 · doi:10.1215/S0012-7094-85-05240-8
[12] Coombes, Kevin R.; Grant, David R., On heterogeneous spaces, J. London Math. Soc. (2), 40, 3, 385-397 (1989) · Zbl 0714.14021 · doi:10.1112/jlms/s2-40.3.385
[13] Cremona, J. E.; Lingham, M. P., Finding all elliptic curves with good reduction outside a given set of primes, Experiment. Math., 16, 3, 303-312 (2007) · Zbl 1149.11028
[14] Duke, William, Elliptic curves with no exceptional primes, C. R. Acad. Sci. Paris S\'{e}r. I Math., 325, 8, 813-818 (1997) · Zbl 1002.11049 · doi:10.1016/S0764-4442(97)80118-8
[15] Flynn, E. Victor; Wetherell, Joseph L., Covering collections and a challenge problem of Serre, Acta Arith., 98, 2, 197-205 (2001) · Zbl 1049.11066 · doi:10.4064/aa98-2-9
[16] Gauss, Carl Friedrich, Disquisitiones Arithmeticae, Translated into English by Arthur A. Clarke, S. J, xx+472 pp. (1966), Yale University Press, New Haven, Conn.-London · Zbl 0136.32301
[17] Greicius, Aaron, Elliptic curves with surjective adelic Galois representations, Experiment. Math., 19, 4, 495-507 (2010) · Zbl 1263.11062 · doi:10.1080/10586458.2010.10390639
[18] Gurak, S., Minimal polynomials for Gauss circulants and cyclotomic units, Pacific J. Math., 102, 2, 347-353 (1982) · Zbl 0501.12003
[19] Halberstadt, Emmanuel, Sur la courbe modulaire \(X_{\text{nd\'ep}}(11)\), Experiment. Math., 7, 2, 163-174 (1998) · Zbl 0922.11047
[20] Hindry, Marc; Silverman, Joseph H., Diophantine Geometry, Graduate Texts in Mathematics 201, xiv+558 pp. (2000), Springer-Verlag, New York · Zbl 0948.11023 · doi:10.1007/978-1-4612-1210-2
[21] Jones, Nathan, Almost all elliptic curves are Serre curves, Trans. Amer. Math. Soc., 362, 3, 1547-1570 (2010) · Zbl 1204.11088 · doi:10.1090/S0002-9947-09-04804-1
[22] Katz, Eric; Rabinoff, Joseph; Zureick-Brown, David, Diophantine and tropical geometry, and uniformity of rational points on curves. Algebraic Geometry: Salt Lake City 2015, Proc. Sympos. Pure Math. 97, 231-279 (2018), Amer. Math. Soc., Providence, RI · Zbl 1451.14071
[23] Katz, Nicholas M., Galois properties of torsion points on abelian varieties, Invent. Math., 62, 3, 481-502 (1981) · Zbl 0471.14023 · doi:10.1007/BF01394256
[24] Lang, Serge, Elliptic Functions, Graduate Texts in Mathematics 112, xii+326 pp. (1987), Springer-Verlag, New York · Zbl 0615.14018 · doi:10.1007/978-1-4612-4752-4
[25] The LMFDB Collaboration, The l-functions and modular forms database (2013)
[26] Mazur, B., Rational points on modular curves. Modular Functions of One Variable, V, Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976, Lecture Notes in Math. 601, 107-148 (1977), Springer, Berlin · Zbl 0357.14005
[27] McCallum, William; Poonen, Bjorn, The method of Chabauty and Coleman. Explicit Methods in Number Theory, Panor. Synth\`eses 36, 99-117 (2012), Soc. Math. France, Paris · Zbl 1377.11077
[28] Morrow, Jackson S., Electronic transcript of computations for the manuscript “{C}omposite images of {G}alois for elliptic curves over {\( \mathbf{Q} \)} & {E}ntanglement fields” (2017)
[29] Ribet, Kenneth A., Galois action on division points of Abelian varieties with real multiplications, Amer. J. Math., 98, 3, 751-804 (1976) · Zbl 0348.14022 · doi:10.2307/2373815
[30] Rouse, Jeremy; Zureick-Brown, David, Electronic transcript of computations for the paper “Elliptic curves over \(\mathbf{Q}\) and 2-adic images of {G}alois” · Zbl 1397.11095
[31] Rouse, Jeremy; Zureick-Brown, David, Elliptic curves over \(\mathbb{Q}\) and 2-adic images of Galois, Res. Number Theory, 1, Art. 12, 34 pp. (2015) · Zbl 1397.11095 · doi:10.1007/s40993-015-0013-7
[32] Rubin, K.; Silverberg, A., Mod \(2\) representations of elliptic curves, Proc. Amer. Math. Soc., 129, 1, 53-57 (2001) · Zbl 1030.11025 · doi:10.1090/S0002-9939-00-05539-8
[33] Serre, Jean-Pierre, Propri\'{e}t\'{e}s galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math., 15, 4, 259-331 (1972) · Zbl 0235.14012 · doi:10.1007/BF01405086
[34] Siksek, Samir, Chabauty for symmetric powers of curves, Algebra Number Theory, 3, 2, 209-236 (2009) · Zbl 1254.11065 · doi:10.2140/ant.2009.3.209
[35] Silverman, Joseph H., The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics 106, xx+513 pp. (2009), Springer, Dordrecht · Zbl 1194.11005 · doi:10.1007/978-0-387-09494-6
[36] Skorobogatov, Alexei, Torsors and rational points, Cambridge Tracts in Mathematics 144, viii+187 pp. (2001), Cambridge University Press, Cambridge · Zbl 0972.14015 · doi:10.1017/CBO9780511549588
[37] Stoll, Michael, Independence of rational points on twists of a given curve, Compos. Math., 142, 5, 1201-1214 (2006) · Zbl 1128.11033 · doi:10.1112/S0010437X06002168
[38] Sutherland, Andrew V.; Zywina, David, Modular curves of genus zero and prime-power level, Algebra Number Theory, to appear · Zbl 1374.14022
[39] Wetherell, Joseph Loebach, Bounding the number of rational points on certain curves of high rank, 61 pp. (1997), ProQuest LLC, Ann Arbor, MI
[40] Zywina, David, Elliptic curves with maximal Galois action on their torsion points, Bull. Lond. Math. Soc., 42, 5, 811-826 (2010) · Zbl 1221.11136 · doi:10.1112/blms/bdq039
[41] Zywina, David, Hilbert’s irreducibility theorem and the larger sieve, arXiv preprint arXiv:1011.6465, 2010
[42] Zywina, David, On the surjectivity of mod \(\ell\) representations associated to elliptic curves, preprint, 2011 · Zbl 1278.11064
[43] Zywina, David, On the possible images of the mod \(\ell\) representations associated to elliptic curves over \(\mathbf{Q} \), {\rm2015}
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.