×

Elliptic curves over \(\mathbb {Q}\) and 2-adic images of Galois. (English) Zbl 1397.11095

In this highly important paper the authors give a classification of all possible 2-adic images of Galois representations associated to elliptic curves over \(\mathbb {Q}\). To this end, they compute the ‘arithmetically maximal’ tower of 2-power level modular curves, develop techniques to compute their equations, and classify the rational points on these curves.
Central is the following:
Theorem 1.1. Let \(H\in \mathrm{GL}_2(\mathbb Z_2)\) be a subgroup, and \(E\) be an elliptic curve whose 2-adic image is contained in \(H\). Then one of the following holds:
– The modular curve \(X_H\) has infinitely many rational points.
– The curve \(E\) has complex multiplication.
– The \(j\)-invariant of \(E\) appears in the table 1 of exceptional j-invariants given in the paper.
Further we state their
Corollary 1.3. Let \(E\) be an elliptic curve over \(\mathbb Q\) without complex multiplication. Then the index of \(\rho_{E,2^\infty}(G_{\mathbb Q})\) divides 64 or 96; all such indices occur. Moreover, the image of \(\rho_{E,2^\infty}(G_{\mathbb Q})\) is the inverse image in \( \mathrm{GL}_2(\mathbb Z_2)\) of the image of \(\rho_{E,32}(G_{\mathbb Q})\). For non-CM elliptic curves \(E/\mathbb Q\), there are precisely 1208 possible images for \(\rho_{E,2^\infty}\).
Several interesting remarks show relations with other papers and some are of interest in their own.

MSC:

11G05 Elliptic curves over global fields
11F80 Galois representations
11G18 Arithmetic aspects of modular and Shimura varieties

References:

[1] Arai, K: On uniform lower bound of the Galois images associated to elliptic curves. J. Théor. Nombres Bordeaux. 20(1), 23-43 (2008). http://jtnb.cedram.org/item?id=JTNB_2008__20_1_23_0. · Zbl 1211.11066 · doi:10.5802/jtnb.614
[2] Baran, B: A modular curve of level 9 and the class number one problem. J. Number Theory. 129(3), 715-728 (2009). doi:10.1016/j.jnt.2008.09.013. · Zbl 1186.11032 · doi:10.1016/j.jnt.2008.09.013
[3] Baran, B: Normalizers of non-split Cartan subgroups, modular curves, and the class number one problem. J. Number Theory. 130(12), 2753-2772 (2010). doi:10.1016/j.jnt.2010.06.005. · Zbl 1236.11094 · doi:10.1016/j.jnt.2010.06.005
[4] Baran, B: An exceptional isomorphism between modular curves of level 13. J. Number Theory. 145, 273-300 (2014). · Zbl 1300.11055 · doi:10.1016/j.jnt.2014.05.017
[5] Bröker, R, Lauter, K, Sutherland, AV: Modular polynomials via isogeny volcanoes. Math. Comp. 81(278), 1201-1231 (2012). doi:10.1090/S0025-5718-2011-02508-1. · Zbl 1267.11125 · doi:10.1090/S0025-5718-2011-02508-1
[6] Bilu, Y, Parent, P, Rebolledo, M: Rational points on X0+(pr) \(X_0^+ (p^r) (2011)\). arXiv:1104.4641, Preprint. · Zbl 0574.14023
[7] Bruin, N, Poonen, Bj, Stoll, M: Generalized explicit descent and its application to curves of genus, 3 (2012). Preprint. · Zbl 1316.11056
[8] Bruin, N: Chabauty methods using elliptic curves. J. Reine Angew. Math. 562, 27-49 (2003). · Zbl 1135.11320
[9] Bruin, N., Some ternary Diophantine equations of signature (n,n,2) (2006), Berlin · Zbl 1159.11012
[10] Bruin, N: The arithmetic of Prym varieties in genus 3. Compos. Math. 144(2), 317-338 (2008). doi:10.1112/S0010437X07003314. · Zbl 1166.11022 · doi:10.1112/S0010437X07003314
[11] Bruin, N, Stoll, M: Deciding existence of rational points on curves: an experiment, Experiment. Math. 17(2), 181-189 (2008). http://projecteuclid.org/getRecord?id=euclid.em/1227118970. · Zbl 1218.11065
[12] Coombes, KR, Grant, DR: On heterogeneous spaces. J. London Math. Soc. (2). 40(3), 385-397 (1989). doi:10.1112/jlms/s2-40.3.385. · Zbl 0714.14021 · doi:10.1112/jlms/s2-40.3.385
[13] Chen, I: On Siegel’s modular curve of level 5 and the class number one problem. J. Number Theory. 74(2), 278-297 (1999). doi:10.1006/jnth.1998.2320. · Zbl 0916.11036 · doi:10.1006/jnth.1998.2320
[14] Cohen, H: Number theory. Vol. I. Tools and Diophantine equations. Graduate Texts in Mathematics, Vol. 239. Springer, New York (2007). · Zbl 1119.11001
[15] Cummins, CJ, Pauli, S: Congruence subgroups of PSL(2,ℤ) of genus less than or equal to 24. Experiment. Math. 12(2), 243-255 (2003). http://projecteuclid.org/getRecord?id=euclid.em/1067634734. · Zbl 1060.11021 · doi:10.1080/10586458.2003.10504495
[16] Dokchitser, T, Dokchitser, V: Surjectivity of mod 2n representations of elliptic curves. Math. Z. 272(3-4), 961-964 (2012). doi:10.1007/s00209-011-0967-7. · Zbl 1315.11046 · doi:10.1007/s00209-011-0967-7
[17] Dokchitser, T, Dokchitser, V: Identifying Frobenius elements in Galois groups. Algebra Number Theory. 7(6), 1325-1352 (2013). doi:10.2140/ant.2013.7.1325. · Zbl 1368.11115 · doi:10.2140/ant.2013.7.1325
[18] Deligne, P.; Rapoport, M., Les schémas de modules de courbes elliptiques (1973), Berlin · Zbl 0281.14010
[19] Diamond, F, Shurman, J: A first course in modular forms: Graduate Texts in Mathematics, Vol. 228. Springer-Verlag, New York (2005). · Zbl 1062.11022
[20] Elkies, ND: Elliptic curves with 3-adic galois representation surjective mod 3 but not mod 9 (2006). Preprint. · Zbl 1267.11125
[21] Flynn, EV, Wetherell, JL: Covering collections and a challenge problem of Serre. Acta Arith. 98(2), 197-205 (2001). doi:10.4064/aa98-2-9. · Zbl 1049.11066 · doi:10.4064/aa98-2-9
[22] González-Jiménez, E, González, J: Modular curves of genus 2, Vol. 72 (2003). doi:10.1090/S0025-5718-02-01458-8. · Zbl 1081.11042
[23] González-Jiménez, E, Lozano-Robledo, Á: Elliptic curves with abelian division fields. Preprint. · Zbl 1410.11051
[24] Hecke, E: Theorie der Eisensteinschen Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik. Abh. Math. Sem. Univ. Hamburg. 5(1), 199-224 (1927). doi:10.1007/BF02952521. · JFM 53.0345.02 · doi:10.1007/BF02952521
[25] Heegner, K: Diophantische Analysis und Modulfunktionen. Math. Z. 56, 227-253 (1952). · Zbl 0049.16202 · doi:10.1007/BF01174749
[26] Jones, JW: Number fields unramified away from 2. J. Number Theory. 130(6), 1282-1291 (2010). doi:10.1016/j.jnt.2010.02.005. · Zbl 1203.11073 · doi:10.1016/j.jnt.2010.02.005
[27] Jones, R, Rouse, J: Galois theory of iterated endomorphisms. Proc. Lond. Math. Soc. (3). 100(3), 763-794 (2010). doi:10.1112/plms/pdp051. Appendix A by Jeffrey D. Achter. · Zbl 1244.11057 · doi:10.1112/plms/pdp051
[28] Kenku, MA: A note on the integral points of a modular curve of level 7. Mathematika. 32(1), 45-48 (1985). doi:10.1112/S0025579300010846. · Zbl 0585.14022 · doi:10.1112/S0025579300010846
[29] Knapp, AW: Elliptic curves. Mathematical Notes, Vol. 40. Princeton University Press, Princeton, NJ (1992). · Zbl 0804.14013
[30] Mazur, B., Rational points on modular curves (1977), Berlin · Zbl 0357.14005
[31] Mazur, B: Rational isogenies of prime degree (with an appendix by D. Goldfeld). Invent. Math. 44(2), 129-162 (1978). · Zbl 0386.14009 · doi:10.1007/BF01390348
[32] McMurdy, K: Explicit equations for X0(N). http://phobos.ramapo.edu/ kmcmurdy/research/Models/index.html. · Zbl 1089.11033
[33] Momose, F: Rational points on the modular curves Xsplit(p). Compositio Math. 52(1), 115-137 (1984). http://www.numdam.org/item?id=CM_1984__52_1_115_0. · Zbl 0574.14023
[34] McCallum, W, Poonen, B: The method of Chabauty and Coleman. Soc. Math., France, Paris (2012). · Zbl 1377.11077
[35] Nishioka, K: The 2-adic representations attached to elliptic curves defined over Q whose points of order 2 are all Q-rational. J. Math. Soc. Japan. 35(2), 191-219 (1983). doi:10.2969/jmsj/03520191. · Zbl 0526.14019 · doi:10.2969/jmsj/03520191
[36] Poonen, B., Computing rational points on curves (2002), MA · Zbl 1038.11037
[37] Poonen, B, Schaefer, EF: Explicit descent for Jacobians of cyclic covers of the projective line. J. Reine Angew. Math. 488, 141-188 (1997). · Zbl 0888.11023
[38] Rouse, J, Zureick-Brown, D: Electronic transcript of computations for the paper ‘Elliptic curves over ℚ \(\mathbb{Q}\) and 2-adic images of Galois’. Available at, http://users.wfu.edu/rouseja/2adic/. (Data files and scripts will also be posted on arXiv). · Zbl 1397.11095
[39] Serre, J-P: Propriétés Galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15(4), 259-331 (1972). · Zbl 0235.14012 · doi:10.1007/BF01405086
[40] Serre, J-P: Lectures on the Mordell-Weil theorem. Translated from the French and edited by Martin Brown from notes by Michel Waldschmidt. With a foreword by Brown and Serre. 3rd ed. Aspects of Mathematics. Friedr. Vieweg & Sohn, Braunschweig (1997). x+218 pp. ISBN: 3-528-28968-6 MR1757192(2000m:11049). · Zbl 0863.14013
[41] Shimura, G., Introduction to the arithmetic theory of automorphic functions (1971), Tokyo · Zbl 0221.10029
[42] Shimura, M: Defining equations of modular curves X0(N). Tokyo J. Math. 18(2), 443-456 (1995). doi:10.3836/tjm/1270043475. · Zbl 0865.11052 · doi:10.3836/tjm/1270043475
[43] Silverman, JH: The arithmetic of elliptic curves, Second edition, Graduate Texts in Mathematics, Vol. 106. Springer, Dordrecht (2009). · Zbl 1194.11005 · doi:10.1007/978-0-387-09494-6
[44] Skorobogatov, A: Torsors and rational points, Cambridge Tracts in Mathematics, Vol. 144. Cambridge University Press, Cambridge (2001). http://dx.doi.org.ezproxy.library.wisc.edu/10.1017/CBO9780511549588. · Zbl 0972.14015 · doi:10.1017/CBO9780511549588
[45] Schoof, R, Tzanakis, N: Integral points of a modular curve of level 11. Acta Arith. 152(1), 39-49 (2012). doi:10.4064/aa152-1-4. · Zbl 1292.11057 · doi:10.4064/aa152-1-4
[46] Stoll, M: Implementing 2-descent for Jacobians of hyperelliptic curves. Acta Arith. 98(3), 245-277 (2001). doi:10.4064/aa98-3-4. · Zbl 0972.11058 · doi:10.4064/aa98-3-4
[47] Sutherland, AV: Constructing elliptic curves over finite fields with prescribed torsion. Math. Comp. 81(278), 1131-1147 (2012). doi:10.1090/S0025-5718-2011-02538-X. · Zbl 1267.11074 · doi:10.1090/S0025-5718-2011-02538-X
[48] Sutherland, AV: Computing images of Galois representations attached to elliptic curves (2015). arXiv:1504.07618, Preprint. · Zbl 1361.11040
[49] Sutherland, A: Defining equations for X1(N). http://math.mit.edu/ drew/X1_altcurves.html. · Zbl 1038.11037
[50] Stoll, M, van Luijk, R: Explicit Selmer groups for cyclic covers of ℙ1. Acta Arith. 159(2), 133-148 (2013). doi:10.4064/aa159-2-4. · Zbl 1316.11056 · doi:10.4064/aa159-2-4
[51] Sutherland, A, Zywina, D: Modular curves of genus zero and prime-power level. in preparation. · Zbl 1374.14022
[52] Wetherell, JL: Bounding the number of rational points on certain curves of high rank. ProQuest LLC, Ann Arbor, MI (1997). http://search.proquest.com/docview/304343505. Thesis (Ph.D.)–University of California, Berkeley · Zbl 0221.10029
[53] Wilson, JS: Profinite groups. London Mathematical Society Monographs. New Series. The Clarendon Press Oxford University Press, New York (1998). · Zbl 0909.20001
[54] Zywina, D: On the surjectivity of mod l representations associated to elliptic curves (2011). Preprint.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.