×

Virasoro algebras, kinematic space and the spectrum of modular Hamiltonians in \(\mathrm{CFT}_2\). (English) Zbl 1469.81058

Summary: We construct an infinite class of eigenmodes with integer eigenvalues for the Vacuum Modular Hamiltonian of a single interval \(N\) in 2d CFT and study some of its interesting properties, which includes its action on OPE blocks as well as its bulk duals. Our analysis suggests that these eigenmodes, like the OPE blocks have a natural description on the so called kinematic space of \(\mathrm{CFT}_2\) and in particular realize the Virasoro algebra of the theory on this kinematic space. Taken together, our results hints at the possibility of an effective description of the \(\mathrm{CFT}_2\) in the kinematic space language.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
17B68 Virasoro and related algebras

References:

[1] Haag, R., Local quantum physics: fields, particles, algebras (1992), Germany: Springer, Germany · Zbl 0777.46037 · doi:10.1007/978-3-642-97306-2
[2] E. Witten, APS medal for exceptional achievement in research: invited article on entanglement properties of quantum field theory, Rev. Mod. Phys.90 (2018) 045003.
[3] Casini, H., Relative entropy and the Bekenstein bound, Class. Quant. Grav., 25, 205021 (2008) · Zbl 1152.83361 · doi:10.1088/0264-9381/25/20/205021
[4] R. Bousso, H. Casini, Z. Fisher and J. Maldacena, Proof of a quantum bousso bound, Phys. Rev. D90 (2014) 044002 [arXiv:1404.5635] [INSPIRE].
[5] R. Bousso, H. Casini, Z. Fisher and J. Maldacena, Entropy on a null surface for interacting quantum field theories and the Bousso bound, Phys. Rev. D91 (2015) 084030 [arXiv:1406.4545] [INSPIRE].
[6] Casini, H.; Huerta, M., A finite entanglement entropy and the c-theorem, Phys. Lett. B, 600, 142 (2004) · Zbl 1247.81021 · doi:10.1016/j.physletb.2004.08.072
[7] Casini, H.; Huerta, M., On the RG running of the entanglement entropy of a circle, Phys. Rev. D, 85, 125016 (2012) · doi:10.1103/PhysRevD.85.125016
[8] Casini, H.; Teste, E.; Torroba, G., Relative entropy and the RG flow, JHEP, 03, 089 (2017) · Zbl 1377.81161 · doi:10.1007/JHEP03(2017)089
[9] Casini, H.; Testé, E.; Torroba, G., Markov property of the conformal field theory vacuum and the a theorem, Phys. Rev. Lett., 118, 261602 (2017) · Zbl 1376.81066 · doi:10.1103/PhysRevLett.118.261602
[10] Casini, H.; Salazar Landea, I.; Torroba, G., Irreversibility in quantum field theories with boundaries, JHEP, 04, 166 (2019) · Zbl 1415.81073 · doi:10.1007/JHEP04(2019)166
[11] Faulkner, T.; Leigh, RG; Parrikar, O.; Wang, H., Modular Hamiltonians for deformed half-spaces and the averaged null energy condition, JHEP, 09, 038 (2016) · Zbl 1390.83106 · doi:10.1007/JHEP09(2016)038
[12] J. Koeller, S. Leichenauer, A. Levine and A. Shahbazi-Moghaddam, Local modular Hamiltonians from the quantum null energy condition, Phys. Rev. D97 (2018) 065011 [arXiv:1702.00412] [INSPIRE].
[13] Balakrishnan, S.; Faulkner, T.; Khandker, ZU; Wang, H., A general proof of the quantum null energy condition, JHEP, 09, 020 (2019) · Zbl 1423.81149 · doi:10.1007/JHEP09(2019)020
[14] Ceyhan, F.; Faulkner, T., Recovering the QNEC from the ANEC, Commun. Math. Phys., 377, 999 (2020) · Zbl 1442.83011 · doi:10.1007/s00220-020-03751-y
[15] Jafferis, DL; Lewkowycz, A.; Maldacena, J.; Suh, SJ, Relative entropy equals bulk relative entropy, JHEP, 06, 004 (2016) · Zbl 1388.83268 · doi:10.1007/JHEP06(2016)004
[16] Faulkner, T.; Lewkowycz, A., Bulk locality from modular flow, JHEP, 07, 151 (2017) · Zbl 1380.81313 · doi:10.1007/JHEP07(2017)151
[17] Kabat, D.; Lifschytz, G., Local bulk physics from intersecting modular Hamiltonians, JHEP, 06, 120 (2017) · Zbl 1380.81333 · doi:10.1007/JHEP06(2017)120
[18] Sárosi, G.; Ugajin, T., Modular Hamiltonians of excited states, OPE blocks and emergent bulk fields, JHEP, 01, 012 (2018) · Zbl 1384.81120 · doi:10.1007/JHEP01(2018)012
[19] Das, S.; Ezhuthachan, B., Modular Hamiltonians and large diffeomorphisms in AdS_3, JHEP, 12, 096 (2018) · Zbl 1405.81123 · doi:10.1007/JHEP12(2018)096
[20] B. Czech, L. Lamprou, S. Mccandlish and J. Sully, Modular Berry connection for entangled subregions in AdS/CFT, Phys. Rev. Lett.120 (2018) 091601 [arXiv:1712.07123] [INSPIRE].
[21] Faulkner, T.; Li, M.; Wang, H., A modular toolkit for bulk reconstruction, JHEP, 04, 119 (2019) · Zbl 1415.81080 · doi:10.1007/JHEP04(2019)119
[22] Czech, B.; De Boer, J.; Ge, D.; Lamprou, L., A modular sewing kit for entanglement wedges, JHEP, 11, 094 (2019) · Zbl 1429.83077 · doi:10.1007/JHEP11(2019)094
[23] De Boer, J.; Lamprou, L., Holographic order from modular chaos, JHEP, 06, 024 (2020) · Zbl 1437.83107 · doi:10.1007/JHEP06(2020)024
[24] Blanco, DD; Casini, H.; Hung, L-Y; Myers, RC, Relative entropy and holography, JHEP, 08, 060 (2013) · Zbl 1342.83128 · doi:10.1007/JHEP08(2013)060
[25] Lashkari, N.; Lin, J.; Ooguri, H.; Stoica, B.; Van Raamsdonk, M., Gravitational positive energy theorems from information inequalities, JHEP, 12, 109 (2016) · Zbl 1361.83023
[26] Blanco, D.; Casini, H.; Leston, M.; Rosso, F., Modular energy inequalities from relative entropy, JHEP, 01, 154 (2018) · Zbl 1384.81092 · doi:10.1007/JHEP01(2018)154
[27] Faulkner, T.; Guica, M.; Hartman, T.; Myers, RC; Van Raamsdonk, M., Gravitation from entanglement in Holographic CFTs, JHEP, 03, 051 (2014) · Zbl 1333.83141 · doi:10.1007/JHEP03(2014)051
[28] Faulkner, T.; Haehl, FM; Hijano, E.; Parrikar, O.; Rabideau, C.; Van Raamsdonk, M., Nonlinear gravity from entanglement in conformal field theories, JHEP, 08, 057 (2017) · Zbl 1381.83099 · doi:10.1007/JHEP08(2017)057
[29] S.R. Roy and D. Sarkar, Bulk metric reconstruction from boundary entanglement, Phys. Rev. D98 (2018) 066017 [arXiv:1801.07280] [INSPIRE].
[30] Kabat, D.; Lifschytz, G., Emergence of spacetime from the algebra of total modular Hamiltonians, JHEP, 05, 017 (2019) · Zbl 1416.83102 · doi:10.1007/JHEP05(2019)017
[31] Casini, H.; Huerta, M.; Myers, RC, Towards a derivation of holographic entanglement entropy, JHEP, 05, 036 (2011) · Zbl 1296.81073 · doi:10.1007/JHEP05(2011)036
[32] R. Bousso, V. Chandrasekaran, P. Rath and A. Shahbazi-Moghaddam, Gravity dual of Connes cocycle flow, Phys. Rev. D102 (2020) 066008 [arXiv:2007.00230] [INSPIRE].
[33] Levine, A.; Shahbazi-Moghaddam, A.; Soni, RM, Seeing the entanglement wedge, JHEP, 06, 134 (2021) · Zbl 1466.83068 · doi:10.1007/JHEP06(2021)134
[34] Czech, B.; Lamprou, L.; McCandlish, S.; Mosk, B.; Sully, J., A stereoscopic look into the bulk, JHEP, 07, 129 (2016) · Zbl 1390.83101 · doi:10.1007/JHEP07(2016)129
[35] de Boer, J.; Haehl, FM; Heller, MP; Myers, RC, Entanglement, holography and causal diamonds, JHEP, 08, 162 (2016) · Zbl 1390.83135 · doi:10.1007/JHEP08(2016)162
[36] Czech, B.; Lamprou, L.; McCandlish, S.; Sully, J., Integral geometry and holography, JHEP, 10, 175 (2015) · Zbl 1388.83217 · doi:10.1007/JHEP10(2015)175
[37] Das, S.; Ezhuthachan, B., Spectrum of modular Hamiltonian in the vacuum and excited states, JHEP, 10, 009 (2019) · Zbl 1427.81124 · doi:10.1007/JHEP10(2019)009
[38] Das, S., Comments on spinning OPE blocks in AdS_3/CFT_2, Phys. Lett. B, 792, 397 (2019) · Zbl 1416.81145 · doi:10.1016/j.physletb.2019.03.058
[39] S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, Covariant expansion of the conformal four-point function, Nucl. Phys. B49 (1972) 77 [Erratum ibid.53 (1973) 643] [INSPIRE].
[40] Simmons-Duffin, D., Projectors, shadows, and conformal blocks, JHEP, 04, 146 (2014) · Zbl 1333.83125 · doi:10.1007/JHEP04(2014)146
[41] Bañados, M., Three-dimensional quantum geometry and black holes, AIP Conf. Proc., 484, 147 (1999) · Zbl 1162.83342 · doi:10.1063/1.59661
[42] Anand, N.; Chen, H.; Fitzpatrick, AL; Kaplan, J.; Li, D., An exact operator that knows its location, JHEP, 02, 012 (2018) · Zbl 1387.81297 · doi:10.1007/JHEP02(2018)012
[43] Casini, H.; Huerta, M., Reduced density matrix and internal dynamics for multicomponent regions, Class. Quant. Grav., 26, 185005 (2009) · Zbl 1176.83071 · doi:10.1088/0264-9381/26/18/185005
[44] Erdmenger, J.; Fries, P.; Reyes, IA; Simon, CP, Resolving modular flow: a toolkit for free fermions, JHEP, 12, 126 (2020) · doi:10.1007/JHEP12(2020)126
[45] Cardy, J.; Tonni, E., Entanglement hamiltonians in two-dimensional conformal field theory, J. Stat. Mech., 1612, 123103 (2016) · Zbl 1456.81364 · doi:10.1088/1742-5468/2016/12/123103
[46] Apolo, L.; Jiang, H.; Song, W.; Zhong, Y., Modular Hamiltonians in flat holography and (W)AdS/WCFT, JHEP, 09, 033 (2020) · Zbl 1454.83110 · doi:10.1007/JHEP09(2020)033
[47] Casini, H.; Teste, E.; Torroba, G., Modular Hamiltonians on the null plane and the Markov property of the vacuum state, J. Phys. A, 50, 364001 (2017) · Zbl 1376.81066 · doi:10.1088/1751-8121/aa7eaa
[48] Jefferson, R., Comments on black hole interiors and modular inclusions, SciPost Phys., 6, 042 (2019) · doi:10.21468/SciPostPhys.6.4.042
[49] Borchers, HJ, The CPT theorem in two-dimensional theories of local observables, Commun. Math. Phys., 143, 315 (1992) · Zbl 0751.46045 · doi:10.1007/BF02099011
[50] H.W. Wiesbrock, Half sided modular inclusions of von Neumann algebras, Commun. Math. Phys.157 (1993) 83 [Erratum ibid.184 (1997) 683] [INSPIRE]. · Zbl 0799.46073
[51] Borchers, HJ, On revolutionizing quantum field theory with Tomita’s modular theory, J. Math. Phys., 41, 3604 (2000) · Zbl 1031.81547 · doi:10.1063/1.533323
[52] Wiesbrock, H-W, Symmetries and modular intersections of von Neumann algebras, Lett. Math. Phys., 39, 203 (1997) · Zbl 0866.46038 · doi:10.1023/A:1007361114049
[53] Wiesbrock, HW, Modular intersections of von Neumann algebras in quantum field theory, Commun. Math. Phys., 193, 269 (1998) · Zbl 0908.46039 · doi:10.1007/s002200050329
[54] Kravchuk, P.; Simmons-Duffin, D., Light-ray operators in conformal field theory, JHEP, 11, 102 (2018) · Zbl 1404.81234 · doi:10.1007/JHEP11(2018)102
[55] K.-W. Huang, Lightcone commutator and stress-tensor exchange in d > 2 CFTs, Phys. Rev. D102 (2020) 021701 [arXiv:2002.00110] [INSPIRE].
[56] Belin, A.; Hofman, DM; Mathys, G.; Walters, MT, On the stress tensor light-ray operator algebra, JHEP, 05, 033 (2021) · doi:10.1007/JHEP05(2021)033
[57] K.W. Huang, d > 2 stress-tensor OPE near a line, Phys. Rev. D103 (2021) 121702 [arXiv:2103.09930].
[58] M. Beşken, J. De Boer and G. Mathys, On local and integrated stress-tensor commutators, arXiv:2012.15724 [INSPIRE]. · Zbl 1468.81090
[59] Ishibashi, N.; Tada, T., Infinite circumference limit of conformal field theory, J. Phys. A, 48, 315402 (2015) · Zbl 1325.81151 · doi:10.1088/1751-8113/48/31/315402
[60] Ishibashi, N.; Tada, T., Dipolar quantization and the infinite circumference limit of two-dimensional conformal field theories, Int. J. Mod. Phys. A, 31, 1650170 (2016) · Zbl 1355.81148 · doi:10.1142/S0217751X16501700
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.