×

Stability in Kelvin-Voigt poroelasticity. (English) Zbl 1469.74059

Summary: Hölder continuous dependence of solutions upon the initial data is established for the linear theory of Kelvin-Voigt poroelasticity requiring only symmetry conditions upon the elastic coefficients. A novel functional is introduced to which a logarithmic convexity technique is employed.

MSC:

74H55 Stability of dynamical problems in solid mechanics
74H25 Uniqueness of solutions of dynamical problems in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74D05 Linear constitutive equations for materials with memory
35Q74 PDEs in connection with mechanics of deformable solids

References:

[1] Agmon, S., Unicité et convexité dans les problèmes différentiels. In Sem. Math. Sup (1966), Montreal: University of Montreal Press, Montreal · Zbl 0147.07702
[2] Agmon, S.; Nirenberg, L., Lower bounds and uniqueness theorems for solutions of differential equations in a Hilbert space, Comm. Pure Appl. Math., 20, 207-229 (1967) · Zbl 0147.34603 · doi:10.1002/cpa.3160200106
[3] Ames, KA; Epperson, JF, A kernel based method for the approximate soluition of backward parabolic problems, SIAM J. Numer. Anal., 34, 1357-1390 (1997) · Zbl 0889.65100 · doi:10.1137/S0036142994276785
[4] Ames, KA; Hughes, RJ, Structural stability for ill—posed problems in Banach space, Semigroup Forum, 85, 127-145 (2005) · Zbl 1109.34041 · doi:10.1007/s00233-004-0153-x
[5] Ames, KA; Straughan, B., Non-standard and improperly posed problems (1997), Cambridge: Academic Press, Cambridge
[6] Benrabah, A.; Boussetila, N.; Rebbani, F., Modified auxilliary boundary conditions method for an ill—posed problem for the homogeneous biharmonic equation, Math. Meth. Appl. Sci., 43, 358-383 (2020) · Zbl 1445.35153 · doi:10.1002/mma.5888
[7] Caflisch, RE; Gargano, F.; Sammartino, M.; Sciacca, V., Regularized Euler-\( \alpha\) motion of an infinite array of vortex sheets, Boll. Unione Matem. Italiana, 10, 113-141 (2017) · Zbl 1367.35113
[8] Carasso, A., Reconstructing the past from imprecise knowledge of the present: some examples of non uniqueness in solving parabolic equations backward in time, Math. Meth. Appl. Sci., 36, 249-261 (2013) · Zbl 1302.65213 · doi:10.1002/mma.2582
[9] Carasso, A., Stable explicit stepwise marching scheme in ill posed time-reversed 2D Burgers’ equation, Inverse Prob. Sci. Eng., 27, 1672-1688 (2019) · Zbl 1466.65101 · doi:10.1080/17415977.2018.1523905
[10] Carasso, A.: Computing ill posed time-reversed 2D Navier-Stokes equations using a stabilized explicit finite difference scheme marching backward in time. Inverse Prob. Sci. Eng.. doi:10.1080/17415977.2019.1698564 (2020) · Zbl 1475.65102
[11] Chirita, S.: Well-posed problems. In R. B. Hetnarski, editor, Encyclopedia of thermal stresses. Springer, Dordrecht (2014) doi:10.1007/978-94-007-2739-7_264
[12] Chirita, S.; Zampoli, V., On the forward and backward in time problems in the Kelvin-Voigt thermoelastic materials, Mech. Res. Comm., 68, 25-30 (2015) · doi:10.1016/j.mechrescom.2015.03.007
[13] Fury, M.A.: Ill-posed problems associated with sectorial operators in Banach space. J. Math. Anal. Appl. (2020). doi:10.1016/j.jmaa.2020.124484 · Zbl 1486.47022
[14] Fury, MA; Hughes, RJ, Regularization for a class of ill-posed problems in Banach space, Semigroup Forum, 85, 191-212 (2012) · Zbl 1267.47014 · doi:10.1007/s00233-011-9353-3
[15] Harfash, AJ, Structural stability for two convection models in a reacting fluid with magnetic field effect, Ann. Henri Poincaré, 15, 2441-2465 (2014) · Zbl 1305.76039 · doi:10.1007/s00023-013-0307-z
[16] Hetrick, BMC; Hughes, RJ, Continuous dependence on modelling for nonlinear ill-posed problems, J. Math. Anal. Appl., 349, 420-435 (2009) · Zbl 1169.34042 · doi:10.1016/j.jmaa.2008.08.052
[17] Knops, RJ; Payne, LE, Stability in linear elasticity, Int. J. Sol. Struct., 4, 1233-1242 (1968) · Zbl 0182.58905 · doi:10.1016/0020-7683(68)90007-3
[18] Payne, LE; Straughan, B., Stability in the initial-time geometry problem for the Brinkman and Darcy equations of flow in porous media, J. Math. Pures Appl., 75, 225-271 (1996) · Zbl 0848.76089
[19] Payne, LE; Straughan, B., Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related modelling questions, J. Math. Pures Appl., 77, 317-354 (1998) · Zbl 0906.35067 · doi:10.1016/S0021-7824(98)80102-5
[20] Payne, LE; Straughan, B., Effect of errors in the spatial geometry for temperature dependent Stokes flow, J. Math. Pures Appl., 78, 609-632 (1999) · Zbl 0935.76020 · doi:10.1016/S0021-7824(99)00011-2
[21] Straughan, B., Backward uniqueness and unique continuation for solutions to the Navier-Stokes equations on an exterior domain, J. Math. Pures Appl., 62, 49-62 (1983) · Zbl 0546.76038
[22] Yang, XM; Deng, ZL, A data assimilation process for linear ill-posed problems, Math. Meth. Appl. Sci., 40, 5831-5840 (2017) · Zbl 1453.65128 · doi:10.1002/mma.4432
[23] Carasso, A., Overcoming Hölder continuity in ill posed continuation problems, SIAM J. Numer. Anal., 31, 1535-1557 (1994) · Zbl 0812.35155 · doi:10.1137/0731080
[24] Carasso, A., Logarithmic convexity and the “slow evolution” constraint in ill posed initial value problems, SIAM J. Math. Anal., 30, 479-496 (1999) · Zbl 0939.35190 · doi:10.1137/S0036141098332366
[25] Xinchun, S.; Lakes, RS, Stability of elastic material with negative stiffness ratio and negative Poisson’s ratio, Physica Status Solidi b, 244, 1008-1026 (2007) · doi:10.1002/pssb.200572719
[26] Chirita, S.; Ciarletta, M.; Tibullo, V., Rayleigh surface waves on a Kelvin-Voigt viscoelastic half space, J. Elast., 115, 61-76 (2014) · Zbl 1354.74106 · doi:10.1007/s10659-013-9447-0
[27] Gal, CG; Medjo, TT, A Navier-Stokes-Voigt model with memory, Math. Meth. Appl. Sci., 36, 2507-2523 (2013) · Zbl 1278.35176 · doi:10.1002/mma.2771
[28] Su, K.; Qin, Y., The pullback-D attractors for the 3D Kelvin-Voigt-Brinkman-Forchheimer system with delay, Math. Meth. Appl. Sci., 41, 6122-6129 (2018) · Zbl 1410.35101 · doi:10.1002/mma.5123
[29] Gidde, RR; Pawar, PM, On effect of viscoelastic characteristics of polymers on performance of micreopump, Adv. Mech. Eng., 9, 1-12 (2017) · doi:10.1177/1687814017691211
[30] Jayabal, H.; Dingari, NN; Rai, B., A linear viscoelastic model to understand skin mechanical behaviour and for cosmetic formulation design, Int. J. Cosmetic Sci., 41, 292-299 (2019) · doi:10.1111/ics.12535
[31] Jozwiak B., Orczykowska M,. Dziubinski, M.: Fractional generalizations of Maxwell and Kelvin-Voigt models for biopolymer characterization. Plos One (2015) doi:10.1371/journal.pone.0143090
[32] Svanadze, M.: Potential method in mathematical theories of multi-porosity media. Interdiscip. Appl. Math. 51. Springer Nature, Cham (2019) · Zbl 1481.74007
[33] Straughan, B.: Mathematical aspects of multi-porosity continua. In: Advances in Mechanics and Mathematics Series, vol. 38. Springer, Cham (2017) · Zbl 1390.74009
[34] Chirita, S.: Modelling triple porosity under local thermal nonequilibrium. J. Thermal Stresses. (2020). doi:10.1080/01495739.2019.1679057
[35] Svanadze, MM, Steady vibrations problem in the theory of viscoelasticity for Kelvin-Voigt materials with voids, Proc. Appl. Math. Mech., 12, 283-284 (2012) · doi:10.1002/pamm.201210131
[36] Svanadze, MM, On the solutions of equations of linear thermoelastic theory for Kelvin-Voigt materials with voids, J. Thermal Stresses, 12, 253-269 (2014) · doi:10.1080/01495739.2013.839851
[37] Svanadze, MM, Plain waves and problems of steady vibrations in the theory of viscoelasticity for Kelvin-Voigt materials with double porosity, Arch. Mech., 68, 441-458 (2016) · Zbl 1358.74022
[38] Svanadze, MM, External boundary value problems in the quasi static theory of thermoviscoelasticity for Kelvin-Voigt materials with double porosity, Proc. Appl. Math. Mech., 17, 469-470 (2017) · doi:10.1002/pamm.201710204
[39] Durif, C.; Wynn, M.; Balestrat, M.; Franchin, G.; Kim, YW; Leriche, A.; Miele, P.; Colombo, P.; Bernard, S., Open-celled silicon carbide foams with high porosity from boron-modified polycarbosilanes, J. Eur. Ceram. Soc., 39, 5114-5122 (2019) · doi:10.1016/j.jeurceramsoc.2019.08.012
[40] Navarro, V.; Asensio, L.; Gharbieh, H.; De La Morena, G.; Pulkkanen, VM, A triple porosity hydro-mechanical model for MX-80 bentonite pellet mixtures, Eng. Geol., 265, 105311 (2020) · doi:10.1016/j.enggeo.2019.105311
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.