×

Computing ill-posed time-reversed 2D Navier-Stokes equations, using a stabilized explicit finite difference scheme marching backward in time. (English) Zbl 1475.65102

Summary: This paper constructs an unconditionally stable explicit finite difference scheme, marching backward in time, that can solve an interesting but limited class of ill-posed, time-reversed, 2D incompressible Navier-Stokes initial value problems. Stability is achieved by applying a compensating smoothing operator at each time step to quench the instability. This leads to a distortion away from the true solution. However, in many interesting cases, the cumulative error is sufficiently small to allow for useful results. Effective smoothing operators based on \((- \Delta)^p\), with real \(p>2\), can be efficiently synthesized using FFT algorithms. Similar stabilizing techniques were successfully applied in other ill-posed evolution equations. The analysis of numerical stability is restricted to a related linear problem. However, extensive numerical experiments indicate that such linear stability results remain valid when the explicit scheme is applied to a significant class of time-reversed nonlinear 2D Navier-Stokes initial value problems. Several reconstruction examples are included, based on the stream function-vorticity formulation, and focusing on \(256 \times 256\) pixel images of recognizable objects. Such images, associated with non-smooth underlying intensity data, are used to create severely distorted data at time \(T>0\). Successful backward recovery is shown to be possible at parameter values exceeding expectations.

MSC:

65M30 Numerical methods for ill-posed problems for initial value and initial-boundary value problems involving PDEs
65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65T50 Numerical methods for discrete and fast Fourier transforms
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
35Q30 Navier-Stokes equations
35R25 Ill-posed problems for PDEs
Full Text: DOI

References:

[1] Atmadja J, Bagtzoglou AC. State of the art report on mathematical methods for groundwater pollution source identification. Environ Forensics. 2001;2:205-214. doi: 10.1006/enfo.2001.0055
[2] Bagtzoglou AC, Atmadja J. Marching-jury backward beam equation and quasi-reversibility methods for hydrologic inversion: application to contaminant plume spatial distribution recovery. Water Resour Res. 2003;39:1038. doi:10.1029/2001WR001021 · doi:10.1029/2001WR001021
[3] Bagtzoglou AC, Kenney ED, Hiscox A, et al. Optimization-based atmospheric plume source identification. Environ Forensics. 2014;15:147-158. doi: 10.1080/15275922.2014.890146
[4] Ismail-Zadeh A, Schubert G, Tsepelev I, et al. Inverse problem of thermal convection: numerical approach and application to mantle plume restoration. Phys Earth Planet Inter. 2004;145:99-114. doi: 10.1016/j.pepi.2004.03.006 · doi:10.1016/j.pepi.2004.03.006
[5] Ismail-Zadeh A, Korotkii A, Schubert G, et al. Numerical techniques for solving the inverse retrospective problem of thermal evolution of the Earth interior. Comput Struct. 2009;87:802-811. doi: 10.1016/j.compstruc.2009.01.005 · doi:10.1016/j.compstruc.2009.01.005
[6] Carasso A, Bright D, Vladár AE. APEX method and real-time blind deconvolution of scanning electron microscope imagery. Opt Eng. 2002;41:2499-2514. doi: 10.1117/1.1499970 · doi:10.1117/1.1499970
[7] Carasso AS. APEX blind deconvolution of color Hubble space telescope imagery and other astronomical data. Opt Eng. 2006;45:107004. doi: 10.1117/1.2362579 · doi:10.1117/1.2362579
[8] Carasso AS. Bochner subordination, logarithmic diffusion equations, and blind deconvolution of Hubble space telescope imagery and other scientific data. SIAM J Imaging Sci. 2010;3:954-980. doi: 10.1137/090780225 · Zbl 1207.35281 · doi:10.1137/090780225
[9] Ou K, Jameson AUnsteady adjoint method for the optimal control of advection and Burgers’ equation using high order spectral difference method. 49th AIAA Aerospace Science Meeting; 2011 January 4-7; Orlando, FL. · doi:10.2514/6.2011-24
[10] Allahverdi N, Pozo A, Zuazua E. Numerical aspects of large-time optimal control of Burgers’ equation. ESAIM Math Model Numer Anal. 2016;50:1371-1401. doi: 10.1051/m2an/2015076 · Zbl 1350.49036 · doi:10.1051/m2an/2015076
[11] Gosse L, Zuazua EFiltered gradient algorithms for inverse design problems of one-dimensional Burgers’ equation. In: Gosse L, Natalini R, editors. Innovative algorithms and analysis. Springer; 2017. p. 197-227. (SINDAM Series). · Zbl 1375.35630 · doi:10.1007/978-3-319-49262-9_7
[12] Lundvall J, Kozlov V, Weinerfelt P. Iterative methods for data assimilation for Burgers’ equation. J Inverse Ill-Posed Probl. 2006;14:505-535. doi: 10.1515/156939406778247589 · Zbl 1142.35105 · doi:10.1515/156939406778247589
[13] Auroux D, Bansart P, Blum J. An evolution of the back and forth nudging for geophysical data assimilation: application to Burgers equation and comparisons. Inverse Probl Sci Eng. 2013;21:399-419. doi: 10.1080/17415977.2012.712528 · Zbl 1281.35093
[14] Carasso AS. Compensating operators and stable backward in time marching in nonlinear parabolic equations. Int J Geomath. 2014;5:1-16. doi: 10.1007/s13137-014-0057-1 · Zbl 1327.35161 · doi:10.1007/s13137-014-0057-1
[15] Carasso AS. Stable explicit time marching in well-posed or ill-posed nonlinear parabolic equations. Inverse Probl Sci Eng. 2016;24:1364-1384. doi: 10.1080/17415977.2015.1110150 · Zbl 1348.65128
[16] Carasso AS. Stable explicit stepwise marching scheme in ill-posed time-reversed viscous wave equations. Inverse Probl Sci Eng. 2016;24:1454-1474. doi: 10.1080/17415977.2015.1124429 · Zbl 1348.65156
[17] Carasso AS. Stabilized Richardson leapfrog scheme in explicit stepwise computation of forward or backward nonlinear parabolic equations. Inverse Probl Sci Eng. 2017;25:1719-1742. doi: 10.1080/17415977.2017.1281270 · Zbl 1398.65205
[18] Carasso AS. Stabilized backward in time explicit marching schemes in the numerical computation of ill-posed time-reversed hyperbolic/parabolic systems. Inverse Probl Sci Eng. 2018;1:1-32. doi:10.1080/17415977.2018.1446952
[19] Carasso AS. Stable explicit stepwise marching scheme in ill- posed time-reversed 2D Burgers’ equation. Inverse Probl Sci Eng. 2018;27:1-17. doi:10.1080/17415977.2018.1523905
[20] Johnston H, Liu JG. Finite difference schemes for incompressible flow based on local pressure boundary conditions. J Comput Phys. 2002;180:120-154. doi: 10.1006/jcph.2002.7079 · Zbl 1130.76409 · doi:10.1006/jcph.2002.7079
[21] Ghadimi P, Dashtimanesh A. Solution of 2D Navier-Stokes equation by coupled finite difference-dual reciprocity boundary element method. Appl Math Model. 2011;35:2110-2121. doi: 10.1016/j.apm.2010.11.047 · Zbl 1217.76026 · doi:10.1016/j.apm.2010.11.047
[22] Hou TM. Stable fourth-order stream function methods for incompressible flows with boundaries. J Comput Math. 2009;27:411-458. · Zbl 1212.65318
[23] Zhu H, Shu H, Ding M. Numerical solutions of two-dimensional Burgers’ equations by discrete Adomian decomposition method. Comput Math Appl. 2010;60:840-848. doi: 10.1016/j.camwa.2010.05.031 · Zbl 1201.65190 · doi:10.1016/j.camwa.2010.05.031
[24] Wang Y, Navon IM, Wang X, et al. 2D Burgers equation with large Reynolds number using POD/DEIM and calibration. Int J Numer Methods Fluids. 2016;82:909-931. doi: 10.1002/fld.4249 · doi:10.1002/fld.4249
[25] Dehghan M. Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math Comput Simul. 2006;71:16-30. doi: 10.1016/j.matcom.2005.10.001 · Zbl 1089.65085 · doi:10.1016/j.matcom.2005.10.001
[26] Dehghan M, Abbaszadeh M. Proper orthogonal decomposition variational multiscale element free Galerkin (POD-VMEFG) meshless method for solving incompressible Navier-Stokes equation. Comput Methods Appl Mech Eng. 2016;311:856-888. doi: 10.1016/j.cma.2016.09.008 · Zbl 1439.76060 · doi:10.1016/j.cma.2016.09.008
[27] Dehghan M, Abbaszadeh M. An upwind local radial basis functions-differential quadrature (RBF-DQ) method with proper orthogonal decomposition (POD) approach for solving compressible Euler equation. Eng Anal Bound Elem. 2018;92:244-256. doi: 10.1016/j.enganabound.2017.10.004 · Zbl 1403.65109 · doi:10.1016/j.enganabound.2017.10.004
[28] Sedaghatjoo Z, Dehghan M, Hosseinzadeh H. Numerical solution of 2D Navier-Stokes equation discretized via boundary elements method and finite difference approximation. Eng Anal Bound Elem. 2018;96:64-77. doi: 10.1016/j.enganabound.2018.08.004 · Zbl 1403.76102 · doi:10.1016/j.enganabound.2018.08.004
[29] Ames KA, Straughan B. Non-standard and improperly posed problems. New York (NY): Academic Press; 1997.
[30] Knops RJ. Logarithmic convexity and other techniques applied to problems in continuum mechanics. In. Knops RJ, editor. Symposium on non-well-posed problems and logarithmic convexity. Vol. 316. New York (NY): Springer; 1973. (Lecture Notes in Mathematics). · Zbl 0274.35051 · doi:10.1007/BFb0069620
[31] Knops RJ, Payne LE. On the stability of solutions of the Navier-Stokes equations backward in time. Arch Rat Mech Anal. 1968;29:331-335. doi: 10.1007/BF00283897 · Zbl 0159.14201 · doi:10.1007/BF00283897
[32] Payne LE. Uniqueness and continuous dependence criteria for the Navier-Stokes equations. Rocky Mountain J Math. 1972;2:641-660. doi: 10.1216/RMJ-1972-2-4-641 · Zbl 0259.35068 · doi:10.1216/RMJ-1972-2-4-641
[33] Payne LE, Straughan B. Comparison of viscous flows backward in time with small data. Int J Nonlinear Mech. 1989;24:209-214. doi: 10.1016/0020-7462(89)90039-5 · Zbl 0693.76035 · doi:10.1016/0020-7462(89)90039-5
[34] Payne LE. Some remarks on ill-posed problems for viscous fluids. Int J Eng Sci. 1992;30:1341-1347. doi: 10.1016/0020-7225(92)90145-7 · Zbl 0764.76010 · doi:10.1016/0020-7225(92)90145-7
[35] Carasso AS. Reconstructing the past from imprecise knowledge of the present: effective non-uniqueness in solving parabolic equations backward in time. Math Methods Appl Sci. 2013;36:249-261. doi: 10.1002/mma.2582 · Zbl 1302.65213 · doi:10.1002/mma.2582
[36] Carasso A. Computing small solutions of Burgers’ equation backwards in time. J Math Anal Appl. 1977;59:169-209. doi: 10.1016/0022-247X(77)90100-7 · Zbl 0357.65094 · doi:10.1016/0022-247X(77)90100-7
[37] Hào DN, Nguyen VD, Nguyen VT. Stability estimates for Burgers-type equations backward in time. J Inverse Ill Posed Probl. 2015;23:41-49. doi: 10.1515/jiip-2013-0050 · Zbl 1308.65157 · doi:10.1515/jiip-2013-0050
[38] Serrin JThe initial value problem for the Navier-Stokes equations. Proceedings of Symposium on Non-Linear Problems. University of Wisconsin Press; 1963. pp. 69-98. · Zbl 0115.08502
[39] Richtmyer RD, Morton KW. Difference methods for initial value problems. 2nd ed. New York (NY): Wiley; 1967. · Zbl 0155.47502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.