×

Stable explicit stepwise marching scheme in ill-posed time-reversed 2D Burgers’ equation. (English) Zbl 1466.65101

Author’s abstract: This paper constructs an unconditionally stable explicit difference scheme, marching backward in time, that can solve a limited, but important class of time-reversed 2D Burgers’ initial value problems. Stability is achieved by applying a compensating smoothing operator at each time step to quench the instability. This leads to a distortion away from the true solution. However, in many interesting cases, the cumulative error is sufficiently small to allow for useful results. Effective smoothing operators based on \((-\Delta)^p\), with real \(p>2\), can be efficiently synthesized using FFT algorithms, and this may be feasible even in non-rectangular regions. Similar stabilizing techniques were successfully applied in other ill-posed evolution equations. The analysis of numerical stability is restricted to a related linear problem. However, extensive numerical experiments indicate that such linear stability results remain valid when the explicit scheme is applied to a significant class of time-reversed nonlinear 2D Burgers’ initial value problems. As illustrative examples, the paper uses fictitiously blurred \(256 \times 256\) pixel images, obtained by using sharp images as initial values in well-posed, forward 2D Burgers’ equations. Such images are associated with highly irregular underlying intensity data that can seriously challenge ill-posed reconstruction procedures. The stabilized explicit scheme, applied to the time-reversed 2D Burgers’ equation, is then used to deblur these images. Examples involving simpler data are also studied. Successful recovery from severely distorted data is shown to be possible, even at high Reynolds numbers.

MSC:

65M30 Numerical methods for ill-posed problems for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35R25 Ill-posed problems for PDEs
35K59 Quasilinear parabolic equations
35Q53 KdV equations (Korteweg-de Vries equations)

References:

[1] Cole JD. On a quasi-linear parabolic equation occurring in aerodynamics. Quart Appl Math. 1951;3:225-236. doi: 10.1090/qam/42889 · Zbl 0043.09902 · doi:10.1090/qam/42889
[2] Abazari R, Borhanifar A. Numerical study of the solution of the Burgers and coupled Burgers equations by a differential transformation method. Comput Math Appl. 2010;59:2711-2722. doi: 10.1016/j.camwa.2010.01.039 · Zbl 1193.65178 · doi:10.1016/j.camwa.2010.01.039
[3] Zhu H, Shu H, Ding M. Numerical solutions of two-dimensional Burgers’ equations by discrete Adomian decomposition method. Comput Math Appl. 2010;60:840-848. doi: 10.1016/j.camwa.2010.05.031 · Zbl 1201.65190 · doi:10.1016/j.camwa.2010.05.031
[4] Srivastava VK, Tamsir M, Bhardwaj U, et al. Crank-Nicolson scheme for numerical solutions of two-dimensional coupled Burgers’ equations. Int J Sci Eng Res. 2011;2:1-7.
[5] Khan M. A novel technique for two dimensional Burgers equation. Alexandria Eng J. 2014;53:485-490. doi: 10.1016/j.aej.2014.01.004 · doi:10.1016/j.aej.2014.01.004
[6] Wang Y, Navon IM, Wang X, et al. 2D Burgers equation with large Reynolds number using POD/DEIM and calibration. Int J Numer Meth Fluids. 2016;82:909-931. doi: 10.1002/fld.4249 · doi:10.1002/fld.4249
[7] Zhanlav T, Chuluunbaatar O, Ulziibayar V. Higher-order numerical solution of two-dimensional coupled Burgers’ equations. Am J Comput Math. 2016;6:120-129. doi: 10.4236/ajcm.2016.62013 · Zbl 1328.65186 · doi:10.4236/ajcm.2016.62013
[8] Ou K, Jameson A. Unsteady adjoint method for the optimal control of advection and Burgers’ equation using high order spectral difference method. 49th AIAA Aerospace Science Meeting, 2011 January 4-7; Orlando, FL.
[9] Allahverdi N, Pozo A, Zuazua E. Numerical aspects of large-time optimal control of Burgers’ equation. ESAIM Math Model Numer Anal. 2016;50:1371-1401. doi: 10.1051/m2an/2015076 · Zbl 1350.49036 · doi:10.1051/m2an/2015076
[10] Gosse L, Zuazua E. Filtered gradient algorithms for inverse design problems of one-dimensional Burgers’ equation. In: Gosse L, Natalini R, editors. Innovative algorithms and analysis. SINDAM Series. Springer; 2017. p. 197-227. doi: 10.1007/978-3-319-49262-9_7 · Zbl 1375.35630 · doi:10.1007/978-3-319-49262-9_7
[11] Lundvall J, Kozlov V, Weinerfelt P. Iterative methods for data assimilation for Burgers’ equation. J Inv Ill-Posed Problems. 2006;14:505-535. doi: 10.1515/156939406778247589 · Zbl 1142.35105 · doi:10.1515/156939406778247589
[12] Auroux D, Blum J. A nudging-based data assimilation method for oceanographic problems: the back and forth nudging (BFN) algorithm. Proc Geophys. 2008;15:305-319. doi: 10.5194/npg-15-305-2008 · doi:10.5194/npg-15-305-2008
[13] Auroux D, Nodet M. The back and forth nudging algorithm for data assimilation problems: theoretical results on transport equations. ESAIM:COCV. 2012;18:318-342. doi: 10.1051/cocv/2011004 · Zbl 1252.65159 · doi:10.1051/cocv/2011004
[14] Auroux D, Bansart P, Blum J. An evolution of the back and forth nudging for geophysical data assimilation: application to Burgers’ equation and comparison. Inverse Probl Sci Eng. 2013;21:399-419. doi: 10.1080/17415977.2012.712528 · Zbl 1281.35093
[15] Carasso A. Computing small solutions of Burgers’ equation backwards in time. J Math Anal App. 1977;59:169-209. doi: 10.1016/0022-247X(77)90100-7 · Zbl 0357.65094 · doi:10.1016/0022-247X(77)90100-7
[16] Hào DN, Nguyen VD, Nguyen VT. Stability estimates for Burgers-type equations backward in time. J Inverse Ill Posed Probl. 2015;23:41-49. doi: 10.1515/jiip-2013-0050 · Zbl 1308.65157 · doi:10.1515/jiip-2013-0050
[17] Knops RJ, Payne LE. On the stability of solutions of the Navier-Stokes equations backward in time. Arch Rat Mech Anal. 1968;29:331-335. doi: 10.1007/BF00283897 · Zbl 0159.14201 · doi:10.1007/BF00283897
[18] Payne LE, Straughan B. Comparison of viscous flow backward in time with small data. Int J Nonlinear Mech. 1989;24:209-214. doi: 10.1016/0020-7462(89)90039-5 · Zbl 0693.76035 · doi:10.1016/0020-7462(89)90039-5
[19] Knops RJ. Logarithmic convexity and other techniques applied to problems in continuum mechanics. In: Knops RJ, editor. Symposium on non-well-posed problems and logarithmic convexity. Vol. 316, Lecture notes in mathematics. New York (NY): Springer-Verlag; 1973. p. 31-54. · Zbl 0274.35051
[20] Lattès R, Lions JL. Méthode de Quasi-Réversibilité et Applications [The method of quasi-reversibility and applications]. Paris: Dunod; 1967. · Zbl 0159.20803
[21] Ames KA, Straughan B. Non-standard and improperly posed problems. New York (NY): Academic Press; 1997.
[22] Carasso AS. Reconstructing the past from imprecise knowledge of the present: effective non-uniqueness in solving parabolic equations backward in time. Math Methods Appl Sci. 2012;36:249-261. doi: 10.1002/mma.2582 · Zbl 1302.65213 · doi:10.1002/mma.2582
[23] Carasso AS. Stable explicit time-marching in well-posed or ill-posed nonlinear parabolic equations. Inverse Probl Sci Eng. 2016;24:1364-1384. doi: 10.1080/17415977.2015.1110150 · Zbl 1348.65128
[24] Carasso AS. Stable explicit marching scheme in ill-posed time-reversed viscous wave equations. Inverse Probl Sci Eng. 2016;24:1454-1474. doi: 10.1080/17415977.2015.1124429 · Zbl 1348.65156
[25] Carasso AS. Stabilized Richardson leapfrog scheme in explicit stepwise computation of forward or backward nonlinear parabolic equations. Inverse Probl Sci Eng. 2017;25:1-24. doi: 10.1080/17415977.2017.1281270 · Zbl 1398.65205
[26] Carasso AS. Stabilized backward in time explicit marching schemes in the numerical computation of ill-posed time-reversed hyperbolic/parabolic systems. Inverse Probl Sci Eng. 2018;1:1-32. doi: 10.1080/17415977.2018.1446952
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.