×

A mathematical study of the influence of hypoxia and acidity on the evolutionary dynamics of cancer. (English) Zbl 1467.92057

Summary: Hypoxia and acidity act as environmental stressors promoting selection for cancer cells with a more aggressive phenotype. As a result, a deeper theoretical understanding of the spatio-temporal processes that drive the adaptation of tumour cells to hypoxic and acidic microenvironments may open up new avenues of research in oncology and cancer treatment. We present a mathematical model to study the influence of hypoxia and acidity on the evolutionary dynamics of cancer cells in vascularised tumours. The model is formulated as a system of partial integro-differential equations that describe the phenotypic evolution of cancer cells in response to dynamic variations in the spatial distribution of three abiotic factors that are key players in tumour metabolism: oxygen, glucose and lactate. The results of numerical simulations of a calibrated version of the model based on real data recapitulate the eco-evolutionary spatial dynamics of tumour cells and their adaptation to hypoxic and acidic microenvironments. Moreover, such results demonstrate how nonlinear interactions between tumour cells and abiotic factors can lead to the formation of environmental gradients which select for cells with phenotypic characteristics that vary with distance from intra-tumour blood vessels, thus promoting the emergence of intra-tumour phenotypic heterogeneity. Finally, our theoretical findings reconcile the conclusions of earlier studies by showing that the order in which resistance to hypoxia and resistance to acidity arise in tumours depend on the ways in which oxygen and lactate act as environmental stressors in the evolutionary dynamics of cancer cells.

MSC:

92C32 Pathology, pathophysiology
92D15 Problems related to evolution
35Q92 PDEs in connection with biology, chemistry and other natural sciences

References:

[1] Acar, A.; Nichol, D.; Fernandez-Mateos, J.; Cresswell, GD; Barozzi, I.; Hong, SP; Trahearn, N.; Spiteri, I.; Stubbs, M.; Burke, R., Exploiting evolutionary steering to induce collateral drug sensitivity in cancer, Nat Commun, 11, 1, 1-14 (2020) · doi:10.1038/s41467-020-15596-z
[2] Ambrosi, D.; Preziosi, L., On the closure of mass balance models for tumor growth, Math Models Methods Appl Sci, 12, 5, 737-754 (2002) · Zbl 1016.92016 · doi:10.1142/S0218202502001878
[3] Alfaro, M.; Veruete, M., Evolutionary branching via replicator-mutator equations, J Dyn Differ Equ, 31, 4, 2029-2052 (2019) · Zbl 1426.92047 · doi:10.1007/s10884-018-9692-9
[4] Almeida, L.; Bagnerini, P.; Fabrini, G.; Hughes, BD; Lorenzi, T., Evolution of cancer cell populations under cytotoxic therapy and treatment optimisation: insight from a phenotype-structured model, ESAIM. Math Model Numer Anal, 53, 4, 1157-1190 (2019) · Zbl 1442.35193 · doi:10.1051/m2an/2019010
[5] Amadori, AL; Calzolari, A.; Natalini, R.; Torti, B., Rare mutations in evolutionary dynamics, J Differ Equ, 259, 11, 6191-6214 (2015) · Zbl 1350.92033 · doi:10.1016/j.jde.2015.07.021
[6] Amadori, AL; Natalini, R.; Palmigiani, D., A rare mutation model in a spatial heterogeneous environment, Ecol Complex, 34, 188-197 (2018) · doi:10.1016/j.ecocom.2017.10.003
[7] Anderson, ARA; Quaranta, V., Integrative mathematical oncology, Nat Rev Cancer, 8, 3, 227-234 (2008) · doi:10.1038/nrc2329
[8] Anderson, ARA; Weaver, AM; Cummings, PT; Quaranta, V., Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment, Cell, 127, 5, 905-915 (2006) · doi:10.1016/j.cell.2006.09.042
[9] Anderson, ARA; Rejniak, KA; Gerlee, P.; Quaranta, V., Microenvironment driven invasion: a multiscale multimodel investigation, J Math Biol, 58, 4-5, 579 (2009) · Zbl 1311.92079 · doi:10.1007/s00285-008-0210-2
[10] Ardaševa A, Gatenby RA, Anderson ARA, Byrne HM, Maini PK, Lorenzi T (2020a) A mathematical dissection of the adaptation of cell populations to fluctuating oxygen levels. Bull Math Biol 82(6):81 · Zbl 1453.92093
[11] Ardaševa A, Gatenby RA, Anderson ARA, Byrne HM, Maini PK, Lorenzi T (2020b) Evolutionary dynamics of competing phenotype-structured populations in periodically fluctuating environments. J Math Biol 80(3):775-807 · Zbl 1434.35250
[12] Astanin, S.; Preziosi, L.; Bellomo, N.; de Angelis, E., Multiphase models of tumour growth, Selected topics in cancer modeling, 1-31 (2008), Boston: Birkhäuser, Boston
[13] Astanin, S.; Preziosi, L., Mathematical modelling of the Warburg effect in tumour cords, J Theor Biol, 258, 4, 578-590 (2009) · Zbl 1402.92145 · doi:10.1016/j.jtbi.2009.01.034
[14] Barles, G.; Mirrahimi, S.; Perthame, B., Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result, Methods Appl Anal, 16, 3, 321-340 (2009) · Zbl 1204.35027
[15] Berestycki, H.; Hamel, F., Generalized transition waves and their properties, Commun Pure Appl Math, 65, 5, 592-648 (2012) · Zbl 1248.35039 · doi:10.1002/cpa.21389
[16] Berestycki, H.; Nadin, G., Asymptotic spreading for general heterogeneous Fisher-KPP type equations (2020), In press: Memoirs American Mathematical Society, In press
[17] Bouin, E.; Calvez, V.; Meunier, N.; Mirrahimi, S.; Perthame, B.; Raoul, G.; Voituriez, R., Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration, C R Math, 350, 15-16, 761-766 (2012) · Zbl 1253.35186 · doi:10.1016/j.crma.2012.09.010
[18] Busse J-E, Cuadrado S, Marciniak-Czochra A (2020) Local asymptotic stability of a system of integro-differential equations describing clonal evolution of a self-renewing cell population under mutation. arXiv preprint arXiv:2004.05353
[19] Byrne, HM, Dissecting cancer through mathematics: from the cell to the animal model, Nat Rev Cancer, 10, 3, 221-230 (2010) · doi:10.1038/nrc2808
[20] Byrne, HM; Preziosi, L., Modelling solid tumour growth using the theory of mixtures, Math Med Biol J IMA, 20, 4, 341-366 (2003) · Zbl 1046.92023 · doi:10.1093/imammb/20.4.341
[21] Calsina, À.; Cuadrado, S.; Desvillettes, L.; Raoul, G., Asymptotics of steady states of a selection-mutation equation for small mutation rate, Proc Sect A Math R Soc Edinb, 143, 6, 1123 (2013) · Zbl 1293.35341 · doi:10.1017/S0308210510001629
[22] Carja, O.; Plotkin, JB, The evolutionary advantage of heritable phenotypic heterogeneity, Sci Rep, 7, 1, 1-12 (2017) · doi:10.1038/s41598-017-05214-2
[23] Casciari, JJ; Sotirchos, SV; Sutherland, RM, Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular pH, J Cell Physiol, 151, 2, 386-394 (1992) · doi:10.1002/jcp.1041510220
[24] Celora GL, Byrne HM, Zois C, Kevrekidis PG (2021) Phenotypic variation modulates the growth dynamics and response to radiotherapy of solid tumours under normoxia and hypoxia. arXiv preprint arXiv:2101.05563
[25] Champagnat, N.; Ferrière, R.; Méléard, S., Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models, Theor Popul Biol, 69, 3, 297-321 (2006) · Zbl 1118.92039 · doi:10.1016/j.tpb.2005.10.004
[26] Chaplain, MAJ; Bizzarri, M., Multiscale modelling of cancer: micro-, meso- and macro-scales of growth and spread, Approaching complex diseases, 149-168 (2020), Berlin: Springer, Berlin · doi:10.1007/978-3-030-32857-3_7
[27] Chaplain, MAJ; Lorenzi, T.; Villa, C., Evolutionary dynamics in vascularised tumours under chemotherapy, Vietnam J Math, 49, 143-167 (2021) · Zbl 1464.35381 · doi:10.1007/s10013-020-00445-9
[28] Chisholm, RH; Lorenzi, T., Cell population heterogeneity and evolution towards drug resistance in cancer: biological and mathematical assessment, theoretical treatment optimisation, Biochim Biophys Acta (BBA) Gener Subj, 1860, 11, 2627-2645 (2016) · doi:10.1016/j.bbagen.2016.06.009
[29] Chisholm, RHC; Lorenzi, T.; Lorz, A.; Larsen, AK; de Almeida, LN; Escargueil, A.; Clairambault, J., Emergence of drug tolerance in cancer cell populations: an evolutionary outcome of selection, non-genetic instability and stress-induced adaptation, Cancer Res, 75, 6, 930-939 (2015) · doi:10.1158/0008-5472.CAN-14-2103
[30] Chisholm, RH; Lorenzi, T.; Desvillettes, L.; Hughes, BD, Evolutionary dynamics of phenotype-structured populations: from individual-level mechanisms to population-level consequences, Zeitschrift für angewandte Mathematik und Physik, 67, 100, 1-34 (2016) · Zbl 1364.35380
[31] Cosse, J-P; Michiels, C., Tumour hypoxia affects the responsiveness of cancer cells to chemotherapy and promotes cancer progression, Anti-Cancer Agents Med Chem, 8, 7, 790-797 (2008) · doi:10.2174/187152008785914798
[32] Damaghi, M.; Tafreshi, NK; Lloyd, MC; Sprung, RW; Estrella, VC; Wojtkowiak, JW; Morse, DL; Koomen, JM; Bui, MM; Gatenby, RA; Gillies, RJ, Chronic acidosis in the tumour microenvironment selects for overexpression of LAMP2 in the plasma membrane, Nat Commun, 6, 8752 (2015) · doi:10.1038/ncomms9752
[33] DeClerck, K.; Elble, RC, The role of hypoxia and acidosis in promoting metastasis and resistance to chemotherapy, Front Biosci, 15, 213-225 (2010) · doi:10.2741/3616
[34] Dewhirst, MW, Relationships between cycling hypoxia, HIF-1, angiogenesis and oxidative stress, Radiat Res, 172, 6, 653-665 (2009) · doi:10.1667/RR1926.1
[35] Di Costanzo, E.; Giacomello, A.; Messina, E.; Natalini, R.; Pontrelli, G.; Rossi, F.; Smits, R.; Twarogowska, M., A discrete in continuous mathematical model of cardiac progenitor cells formation and growth as spheroid clusters (Cardiospheres), Math Med Biol J IMA, 35, 1, 121-144 (2018) · Zbl 1404.92026
[36] Diekmann, O.; Jabin, P-E; Mischler, S.; Perthame, B., The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach, Theor Popul Biol, 67, 4, 257-271 (2005) · Zbl 1072.92035 · doi:10.1016/j.tpb.2004.12.003
[37] Doerfler, W.; Böhm, P., DNA methylation: development, genetic disease and cancer, 310 (2006), Berlin: Springer, Berlin · doi:10.1007/3-540-31181-5
[38] Duesberg, P.; Stindl, R.; Hehlmann, R., Explaining the high mutation rates of cancer cells to drug and multidrug resistance by chromosome reassortments that are catalyzed by aneuploidy, Proc Natl Acad Sci, 97, 26, 14295-14300 (2000) · doi:10.1073/pnas.97.26.14295
[39] Eastman B, Wodarz D, Kohandel M (2020) The effects of phenotypic plasticity on the fixation probability of mutant cancer stem cells. J Theor Biol 503:110384 · Zbl 1453.92071
[40] Fais, S.; Venturi, G.; Gatenby, B., Microenvironmental acidosis in carcinogenesis and metastases: new strategies in prevention and therapy, Cancer Metastasis Rev, 33, 4, 1095-1108 (2014) · doi:10.1007/s10555-014-9531-3
[41] Iglesias, SF; Mirrahimi, S., Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments, SIAM J Math Anal, 50, 5, 5537-5568 (2018) · Zbl 1491.35272 · doi:10.1137/18M1175185
[42] Gallaher, J.; Anderson, ARA, Evolution of intratumoral phenotypic heterogeneity: the role of trait inheritance, Interface Focus, 3, 4, 20130016 (2016) · doi:10.1098/rsfs.2013.0016
[43] Gallaher, JA; Brown, J.; Anderson, ARA, The impact of proliferation-migration tradeoffs on phenotypic evolution in cancer, Sci Rep, 9, 2425 (2019) · doi:10.1038/s41598-019-39636-x
[44] Gatenby, RA; Gawlinski, ET, A reaction-diffusion model of cancer invasion, Cancer Res, 56, 24, 5745-5753 (1996)
[45] Gatenby, RA; Smallbone, K.; Maini, PK; Rose, F.; Averill, JG; Nagle, RB; Worrall, LJ; Gillies, RJ, Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer, Br J Cancer, 97, 5, 646-653 (2007) · doi:10.1038/sj.bjc.6603922
[46] Gatenby, RA; Silva, AS; Gillies, RJ; Frieden, BR, Adaptive therapy, Cancer Res, 69, 11, 4894-4903 (2009) · doi:10.1158/0008-5472.CAN-08-3658
[47] Gay L, Baker A-M, Graham TA (2016) Tumour cell heterogeneity, Faculty of 1000 Ltd, 5
[48] Genieys, S.; Volpert, V.; Auger, P., Adaptive dynamics: modelling Darwin’s divergence principle, C R Biol, 329, 11, 876-879 (2006) · doi:10.1016/j.crvi.2006.08.006
[49] Gerlinger, M.; Rowan, AJ; Horswell, S.; Larkin, S.; Endesfelder, D.; Gronroos, E.; Martinez, P.; Matthews, N.; Stewart, A.; Tarpey, P., Intratumor heterogeneity and branched evolution revealed by multiregion sequencing, New Engl J Med, 366, 883-892 (2012) · doi:10.1056/NEJMoa1113205
[50] Gillies, RJ; Verduzco, D.; Gatenby, RA, Evolutionary dynamics of carcinogenesis and why targeted therapy does not work, Nat Rev Cancer, 12, 7, 487-493 (2012) · doi:10.1038/nrc3298
[51] Hamis, SJ; Powathil, GG; Matthäus, F.; Matthäus, S.; Harris, S.; Hillen, T., Can we crack cancer?, The art of theoretical biology, 50-51 (2020), Berlin: Springer, Berlin · doi:10.1007/978-3-030-33471-0_25
[52] Hatzikirou, H.; Basanta, D.; Simon, M.; Schaller, K.; Deutsch, A., ‘Go or grow’: the key to the emergence of invasion in tumour progression?, Math Med Biol J IMA, 29, 1, 49-65 (2012) · Zbl 1234.92031 · doi:10.1093/imammb/dqq011
[53] Hockel, M.; Vaupel, P., Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects, J Natl Cancer Inst, 93, 4, 266-276 (2001) · doi:10.1093/jnci/93.4.266
[54] Ibrahim-Hashim, A.; Robertson-Tessi, M.; Enriquez-Navas, PM; Damaghi, M.; Balagurunathan, Y.; Wojtkowiak, JW; Russell, S.; Yoonseok, K.; Lloyd, MC; Bui, MM, Defining cancer subpopulations by adaptive strategies rather than molecular properties provides novel insights into intratumoral evolution, Cancer Res, 77, 9, 2242-2254 (2017) · doi:10.1158/0008-5472.CAN-16-2844
[55] Kim, J-W; Dang, CV, Cancer’s molecular sweet tooth and the Warburg effect, Cancer Res, 66, 18, 8927-8930 (2006) · doi:10.1158/0008-5472.CAN-06-1501
[56] Kim Y, Kang H, Powathil G, Kim H, Trucu D, Lee W, Lawler SE, Chaplain MAJ (2018) Role of extracellular matrix and microenvironment in regulation of tumor growth and LAR-mediated invasion in glioblastoma. PLoS ONE 13(10):e0204865
[57] Kimura, H.; Braun, RD; Ong, ET; Hsu, R.; Secomb, TW; Papahadjopoulos, D.; Hong, K.; Dewhirst, MW, Fluctuations in red cell flux in tumor microvessels can lead to transient hypoxia and reoxygenation in tumor parenchyma, Cancer Res, 56, 23, 5522-5528 (1996)
[58] Korolev, KS; Xavier, JB; Gore, J., Turning ecology and evolution against cancer, Nat Rev Cancer, 14, 5, 371-380 (2014) · doi:10.1038/nrc3712
[59] LeVeque RJ (2007) Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia · Zbl 1127.65080
[60] Lewin, TD; Maini, PK; Moros, EG; Enderling, H.; Byrne, HM, The evolution of tumour composition during fractionated radiotherapy: implications for outcome, Bull Math Biol, 80, 5, 1207-1235 (2018) · Zbl 1394.92061 · doi:10.1007/s11538-018-0391-9
[61] Lloyd, MC; Cunningham, JJ; Bui, MM; Gillies, RJ; Brown, JS; Joel, S.; Gatenby, RA, Darwinian dynamics of intratumoral heterogeneity: not solely random mutations but also variable environmental selection forces, Cancer Res, 76, 11, 3136-3144 (2016) · doi:10.1158/0008-5472.CAN-15-2962
[62] Loeb, LA, A mutator phenotype in cancer, Cancer Res, 61, 8, 3230-3239 (2001)
[63] Lorenzi, T.; Pouchol, C., Asymptotic analysis of selection-mutation models in the presence of multiple fitness peaks, Nonlinearity, 33, 11, 5791 (2020) · Zbl 1454.35398 · doi:10.1088/1361-6544/ab9bad
[64] Lorenzi, T.; Chisholm, RH; Desvillettes, L.; Hughes, BD, Dissecting the dynamics of epigenetic changes in phenotype-structured populations exposed to fluctuating environments, J Theor Biol, 386, 166-176 (2015) · Zbl 1343.92320 · doi:10.1016/j.jtbi.2015.08.031
[65] Lorenzi, T.; Chisholm, RH; Clairambault, J., Tracking the evolution of cancer cell populations through the mathematical lens of phenotype-structured equations, Biol Direct, 11, 1, 43 (2016) · doi:10.1186/s13062-016-0143-4
[66] Lorenzi, T.; Venkataraman, C.; Lorz, A.; Chaplain, MAJ, The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity, J Theor Biol, 451, 14, 101-110 (2018) · Zbl 1397.92343 · doi:10.1016/j.jtbi.2018.05.002
[67] Lorenzi T, Perthame B, Ruan X (2021) Invasion fronts and adaptive dynamics in a model for the growth of cell populations with heterogeneous mobility. Eur J Appl Math, in press
[68] Lorz, A.; Lorenzi, T.; Hochberg, ME; Clairambault, J.; Perthame, B., Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies, ESAIM. Math Model Numer Anal, 47, 2, 377-399 (2013) · Zbl 1274.92025 · doi:10.1051/m2an/2012031
[69] Lorz, A.; Lorenzi, T.; Clairambault, J.; Escargueil, A.; Perthame, B., Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors, Bull Math Biol, 77, 1, 1-22 (2015) · Zbl 1334.92204 · doi:10.1007/s11538-014-0046-4
[70] Maley, CC; Aktipis, A.; Graham, TA; Sottoriva, A.; Boddy, AM; Janiszewska, M.; Silva, AS; Gerlinger, M.; Yuan, Y.; Pienta, KJ, Classifying the evolutionary and ecological features of neoplasms, Nat Rev Cancer, 17, 10, 605-619 (2017) · doi:10.1038/nrc.2017.69
[71] Martinez-Outschoorn, UE; Peiris-Pagés, M.; Pestell, RG; Sotgia, F.; Lisanti, MP, Cancer metabolism: a therapeutic perspective, Nat Rev Clin Oncol, 14, 1, 11-31 (2016) · doi:10.1038/nrclinonc.2016.60
[72] Marusyk, A.; Almendro, V.; Polyak, K., Intra-tumour heterogeneity: a looking glass for cancer?, Nature Rev Cancer, 12, 5, 323-334 (2012) · doi:10.1038/nrc3261
[73] Matsumoto, S.; Yasui, H.; Mitchell, JB; Krishna, MC, Imaging cycling tumor hypoxia, Cancer Res, 70, 24, 10019-10023 (2010) · doi:10.1158/0008-5472.CAN-10-2821
[74] Merlo, LMF; Pepper, JW; Reid, BJ; Maley, CC, Cancer as an evolutionary and ecological process, Nat Rev Cancer, 6, 12, 924-935 (2006) · doi:10.1038/nrc2013
[75] Michiels, C.; Tellier, C.; Feron, O., Cycling hypoxia: a key feature of the tumor microenvironment, Biochim Biophys Acta (BBA) Rev Cancer, 1866, 1, 76-86 (2016) · doi:10.1016/j.bbcan.2016.06.004
[76] Michod, RE; Viossat, Y.; Solari, CA; Hurand, M.; Nedelcu, AM, Life-history evolution and the origin of multicellularity, J Theor Biol, 239, 2, 257-272 (2006) · Zbl 1445.92201 · doi:10.1016/j.jtbi.2005.08.043
[77] Michor, F.; Polyak, K., The origins and implications of intratumor heterogeneity, Cancer Prev Res, 3, 11, 1361-1364 (2010) · doi:10.1158/1940-6207.CAPR-10-0234
[78] Mirrahimi, S.; Gandon, S., Evolution of specialization in heterogeneous environments: equilibrium between selection, mutation and migration, Genetics, 214, 2, 479-491 (2020) · doi:10.1534/genetics.119.302868
[79] Misra A, Pandey C, Sze SK, Thanabalu T (2012) Hypoxia activated EGFR signaling induces epithelial to mesenchymal transition (EMT). PLoS ONE 7(11):e49766
[80] Molavian, HR; Kohandel, M.; Milosevic, M.; Sivaloganathan, S., Fingerprint of cell metabolism in the experimentally observed interstitial pH and pO2 in solid tmors, Cancer Res, 69, 23, 9141-9147 (2009) · doi:10.1158/0008-5472.CAN-09-2112
[81] Nguyen, TN; Clairambault, J.; Jaffredo, T.; Perthame, B.; Salort, D., Adaptive dynamics of hematopoietic stem cells and their supporting stroma: a model and mathematical analysis, Math Biosci Eng, 16, 5, 4818-4845 (2019) · Zbl 1497.92082 · doi:10.3934/mbe.2019243
[82] Perthame, B.; Génieys, S., Concentration in the nonlocal Fisher equation: the Hamilton-Jacobi limit, Math Model Nat Phenom, 2, 4, 135-151 (2007) · Zbl 1337.35077 · doi:10.1051/mmnp:2008029
[83] Poleszczuk J, Hahnfeldt P, Enderling H (2015) Evolution and phenotypic selection of cancer stem cells. PLoS Comput Biol 11(3):e1004025
[84] Pouchol, C.; Clairambault, J.; Lorz, A.; Trélat, E., Asymptotic analysis and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy, Journal de Mathématiques Pures et Appliquées, 116, 268-308 (2018) · Zbl 1393.35263 · doi:10.1016/j.matpur.2017.10.007
[85] Prokopiou, S.; Moros, EG; Poleszczuk, J.; Caudell, J.; Torres-Roca, JF; Latifi, K.; Lee, JK; Myerson, R.; Harrison, LB; Enderling, H., A proliferation saturation index to predict radiation response and personalize radiotherapy fractionation, Radiat Oncol, 10, 1, 1-8 (2015) · doi:10.1186/s13014-015-0465-x
[86] Robertson-Tessi, M.; Gillies, RJ; Gatenby, RA; Anderson, ARA, Impact of metabolic heterogeneity on tumor growth, invasion, and treatment outcomes, Cancer Res, 75, 8, 1567-1579 (2015) · doi:10.1158/0008-5472.CAN-14-1428
[87] Strobl, MAR; Krause, AL; Damaghi, M.; Gillies, RJ; Anderson, ARA; Maini, PK, Mix and match: phenotypic coexistence as a key facilitator of cancer invasion, Bull Math Biol, 82, 1, 1-26 (2020) · Zbl 1432.92031 · doi:10.1007/s11538-019-00675-0
[88] Tam, SY; Wu, VWC; Law, HKW, Hypoxia-induced epithelial-mesenchymal transition in cancers: HIF-\(1 \alpha\) and Beyond, Front Oncol, 10, 486 (2020) · doi:10.3389/fonc.2020.00486
[89] Tang, X.; Lucas, JE; Chen, JL-Y; LaMonte, G.; Wu, J.; Wang, MC; Koumenis, C.; Chi, J-T, Functional interaction between responses to lactic acidosis and hypoxia regulates genomic transcriptional outputs, Cancer Res, 72, 2, 491-502 (2012) · doi:10.1158/0008-5472.CAN-11-2076
[90] Teicher, BA, Hypoxia and drug resistance, Cancer Metastasis Rev, 13, 2, 139-168 (1994) · doi:10.1007/BF00689633
[91] Vander Linden, C.; Corbet, C., Reconciling environment-mediated metabolic heterogeneity with the oncogene-driven cancer paradigm in precision oncology, Semin Cell Dev Biol, 98, 202-210 (2020) · doi:10.1016/j.semcdb.2019.05.016
[92] Vaupel, P.; Thews, O.; Hoeckel, M., Treatment resistance of solid tumors: role of hypoxia and anemia, Med Oncol, 18, 243 (2001) · doi:10.1385/MO:18:4:243
[93] Villa, C.; Chaplain, MA; Lorenzi, T., Modeling the emergence of phenotypic heterogeneity in vascularized tumors, SIAM J Appl Math, 81, 2, 434-453 (2021) · Zbl 1464.35382 · doi:10.1137/19M1293971
[94] Zhang W, Shi X, Peng Y, Wu M, Zhang P, Xie R, Wu Y, Yan Q, Wang SLJ (2015) HIF-\(1 \alpha\) promotes epithelial-mesenchymal transition and metastasis through direct regulation of ZEB1 in colorectal cancer. PLoS ONE 10(6):e0129603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.