×

Concentration in the nonlocal Fisher equation: the Hamilton-Jacobi limit. (English) Zbl 1337.35077

Summary: The nonlocal Fisher equation has been proposed as a simple model exhibiting Turing instability and the interpretation refers to adaptive evolution. By analogy with other formalisms used in adaptive dynamics, it is expected that concentration phenomena (like convergence to a sum of Dirac masses) will happen in the limit of small mutations. In the present work we study this asymptotics by using a change of variables that leads to a constrained Hamilton-Jacobi equation. We prove the convergence analytically and illustrate it numerically. We also illustrate numerically how the constraint is related to the concentration points. We investigate numerically some features of these concentration points such as their weights and their numbers. We show analytically how the constrained Hamilton-Jacobi gives the so-called canonical equation relating their motion with the selection gradient. We illustrate this point numerically.

MSC:

35K57 Reaction-diffusion equations
35B25 Singular perturbations in context of PDEs
49L25 Viscosity solutions to Hamilton-Jacobi equations in optimal control and differential games
92C15 Developmental biology, pattern formation
92D15 Problems related to evolution
Full Text: DOI

References:

[1] S. G\'{}enieys, V. Volpert, P. Auger, Pattern and waves for a model in population dynamics with nonlocal consumption of resources. Math. Model. Nat. Phen., 1 (2006), No. 1, 65-82. · Zbl 1201.92055
[2] G. Meszena, M. Gyllenberg, F. J. Jacobs, J. A. J. Metz, Link between population dynamics and dynamics of Darwinian evolution. Phys. Rev. Lett., 95 (2005), 078105. 149 B. Perthame et al.Concentration in nonlocal Fisher equation
[3] S. Pigolotti, C. Lopez, E. Hernandez-Garcia, Species clustering in competitive Lotka-Volterra models. Phys. Rev. Lett., 98 (2007), 258101.
[4] B. Perthame, G. Barles, Dirac concentrations in Lotka-Volterra parabolic PDEs. http://hal.archives-ouvertes.fr/hal-00168404/fr/, Preprint, (2007). · Zbl 1172.35005
[5] A. M. Turing, The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. B, 237 (1952), 37-72. · Zbl 1403.92034
[6] H. Meinhardt. Models of biological pattern formation. Academic Press, London, 1982.
[7] M. A. Fuentes, M. N. Kuperman, V. M. Kenkre, Analytical considerations in the study of spatial patterns arising from nonlocal interaction effects. J. Phys. Chem. B, 108 (2004), 1050510508.
[8] R. Lefever, O. Lejeune, On the origin of tiger bush. Bull. Math. Biology, 59 (1997), No. 2, 263-294. · Zbl 0903.92031
[9] L. Desvillettes, C. Prevost, R. Ferri‘ere, Infinite Dimensional Reaction-Diffusion for Population Dynamics. Preprint n. 2003-04 du CMLA, ENS Cachan.
[10] C. Darwin. On the origin of species by means of natural selection. John Murray, London, 1859.
[11] S. Atamas, Self-organization in computer simulated selective systems. Biosystems, 39 (1996), 143-151.
[12] S. A. H. Geritz, E. Kisdi, G. Meszena, J. A. J. Metz, Evolutionary singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol., 12 (1998), 35-57.
[13] O. Diekmann, P.-E. Jabin, S. Mischler, B. Perthame, The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach. Th. Pop. Biol., 67 (2005), No. 4, 257-271. · Zbl 1072.92035
[14] B. Perthame. Transport equations in biology. Series ’Frontiers in Mathematics’, Birkhauser, 2006.
[15] N. Champagnat, R. Ferri‘ere, S. M\'{}eleard, Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models. Th. Pop. Biol., 69 (2006), No. 3, 297-321. · Zbl 1118.92039
[16] J. Hofbauer, K. Sigmund. Evolutionary games and population dynamics. Cambridge University Press, Cambridge, 1998. · Zbl 0914.90287
[17] J. D. Murray. Mathematical biology, Vol. 1 and 2, Second edition, Springer, 2002. · Zbl 1006.92001
[18] H. Berestycki, F. Hamel. Reaction-Diffusion Equations and Propagation Phenomena. Series Appl. Math. Sci., Springer, 2006. 150 B. Perthame et al.Concentration in nonlocal Fisher equation
[19] S. A. Gourley, Travelling front of a nonlocal Fisher equation. J. Math. Biol., 41 (2000), 272284. · Zbl 0982.92028
[20] Z.-C. Wang, W.-T. Li, S. Ruan, Travelling Wave Fronts in Reaction-Diffusion Systems with Spatio-Temporal Delays. J. Differential Equations, 222 (2006), No. 1, 185-232. · Zbl 1100.35050
[21] H. Berestycki, F. Hamel, N. Nadirashvili, The speed of propagation for KPP type problems. I. Periodic framework. J. Eur. Math. Soc., 7 (2005), No. 2, 173-213. · Zbl 1142.35464
[22] H. Berestycki, G. Nadin, B. Perthame, L. Ryzhik, Work in preparation.
[23] G. Barles, B. Perthame, Concentrations and constrained Hamilton-Jacobi equations arising in adaptive dynamics. In Recent Developments in Nonlinear Partial Differential Equations, D. Danielli editor. To appear in Contemp. Math. (2007). · Zbl 1137.49027
[24] J. A. Carrillo, S. Cuadrado, B. Perthame, Adaptive dynamics via Hamilton-Jacobi approach and entropy methods for a juvenile-adult model. Mathematical Biosciences, 207 (2007), No. 1, 137-161. · Zbl 1106.92053
[25] L. Desvillettes, P.-E. Jabin, S. Mischler, G. Raoul, On mutation selection dynamics. Preprint (2007).
[26] L. C. Evans, P. E. Souganidis, A PDE approach to geometric optics for certain semilinear parabolic equations. Indiana Univ. Math. J., 38 (1989), 141-172. · Zbl 0692.35014
[27] G. Barles, L. C. Evans, P. E. Souganidis, Wavefront propagation for reaction diffusion systems of PDE. Duke Math. J., 61 (1990), 835-858. · Zbl 0749.35015
[28] M. G. Crandall, H. Ishii, P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc., 27 (1992), 1-67. · Zbl 0755.35015
[29] W. H. Fleming, H. M. Soner. Controlled Markov processes and viscosity solutions. Applications of Mathematics 25, Springer, 1993. 151 · Zbl 0773.60070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.