×

Adaptive dynamics of hematopoietic stem cells and their supporting stroma: a model and mathematical analysis. (English) Zbl 1497.92082


MSC:

92C37 Cell biology
92C15 Developmental biology, pattern formation

References:

[1] M. C. Mackey, Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis, Blood, 51 (1978), 941-956.
[2] F. Burns and I. Tannock, On the existence of a G 0 -phase in the cell cycle, Cell Prolif., 3 (1970), 321-334.
[3] L. Lajtha, On DNA labeling in the study of the dynamics of bone marrow cell populations, F. StohlmanJr.(Ed.), The KineticsofCellularProliferation, Gruneand Stratton, NewYork, 173-182.
[4] M. Adimy, S. Bernard, J. Clairambault, et al., Modélisation de la dynamique de l’hématopoïèse normale et pathologique, Hématologie, 14 (2008), 339-350.
[5] M. C. Mackey, C. Ou, L. Pujo-Menjouet, et al., Periodic oscillations of blood cell populations in chronic myelogenous leukemia, SIAM J. Math. Anal., 38 (2006), 166-187. · Zbl 1163.34055
[6] M. Adimy, F. Crauste and S. Ruan, A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia, SIAM J. Appl. Math., 65 (2005), 1328-1352. · Zbl 1090.34058
[7] L. Pujo-Menjouet, S. Bernard and M. C. Mackey, Long period oscillations in a G 0 model of hematopoietic stem cells, SIAM J. Appl. Dyn. Syst., 4 (2005), 312-332. · Zbl 1110.34050
[8] M. Adimy, F. Crauste and S. Ruan, Periodic oscillations in leukopoiesis models with two delays, J. Theor. Biol., 242 (2006), 288-299. · Zbl 1447.92038
[9] A. Ducrot and V. Volpert, On a model of Leukemia development with a spatial cell distribution, Math. Model. Nat. Phenom., 2 (2007), 101-120. · Zbl 1337.92107
[10] G. Clapp and D. Levy, A review of mathematical models for leukemia and lymphoma, Drug Discov. Today Dis. Models, 16 (2015), 1-6.
[11] L. Pujo-Menjouet, Blood cell dynamics: half of a century of modelling, Math. Model. Nat. Phenom., 11 (2016), 92-115. · Zbl 1384.92027
[12] B. A. Anthony and D. C. Link, Regulation of hematopoietic stem cells by bone marrow stromal cells, Trends Immunol., 35 (2014), 32-37.
[13] G. Stik, L. Petit, P. Charbord, et al., Vésicules extracellulaires stromales et régulation des cellules souches et progéniteurs hématopoï étiques, médecine/sciences, 34 (2018), 114-116.
[14] P. Charbord, T. Jaffredo and C. Durand, Le cœur moléculaire de la fonction de la niche des cellules souches hématopoï étiques, médecine/sciences, 31 (2015), 12-14.
[15] P. Hirsch, Y. Zhang, R. Tang, et al., Genetic hierarchy and temporal variegation in the clonal history of acute myeloid leukaemia, Nat. commun., 7 (2016), 12475.
[16] P.-E. Jabin and G. Raoul, On selection dynamics for competitive interactions, J. Math. Biol., 63 (2011), 493-517. · Zbl 1230.92038
[17] C. Pouchol, J. Clairambault, A. Lorz, et al., Asymptotic analysis and optimal control of an integro- differential system modelling healthy and cancer cells exposed to chemotherapy, J. Math. Pures Appl., 116 (2018), 268-308. · Zbl 1393.35263
[18] C. Pouchol and E. Trélat, Global stability with selection in integro-differential Lotka-Volterra systems modelling trait-structured populations, J. Biol.l Dyn., 12 (2018), 872-893. · Zbl 1447.92360
[19] G. Barles and B. Perthame, Dirac concentrations in Lotka-Volterra parabolic PDEs, Indiana Univ. Math. J., 57 (2008), 3275-3301. · Zbl 1172.35005
[20] O. Diekmann, A beginner’s guide to adaptive dynamics, Banach Center Publications, 63 (2003), 47-86. · Zbl 1051.92032
[21] O. Diekmann, P.-E. Jabin, S. Mischler, et al., The dynamics of adaptation: An illuminating example and a hamilton-jacobi approach, Theor. Popul. Biol., 67 (2005), 257-271. · Zbl 1072.92035
[22] W. Djema, C. Bonnet, F. Mazenc, et al., Control in dormancy or eradication of cancer stem cells: Mathematical modeling and stability issues, J. Theor. Biol., 449 (2018), 103-123. · Zbl 1407.92024
[23] A. Lorz, S. Mirrahimi and B. Perthame, Dirac mass dynamics in multidimensional nonlocal parabolic equations, Commun Part. Diff. Eq., 36 (2011), 1071-1098. · Zbl 1229.35113
[24] A. Lorz and B. Perthame, Long-term behaviour of phenotypically structured models, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 20140089, 10. · Zbl 1371.92087
[25] G. Meszéna, I. Czibula and S. Geritz, Adaptive dynamics in a 2-patch environment: A toy model for allopatric and parapatric speciation, J. Biol. Syst., 5 (1997), 265-284. · Zbl 0970.92502
[26] S. Mirrahimi and J.-M. Roquejoffre, A class of Hamilton-Jacobi equations with constraint: uniqueness and constructive approach, J. Differ. Equations, 260 (2016), 4717-4738. · Zbl 1342.35066
[27] J. D. Murray, Mathematical biology. I, vol. 17 of Interdisciplinary Applied Mathematics, 3rd edition, Springer-Verlag, New York, 2002, An introduction. · Zbl 1006.92001
[28] B. Perthame, Transport equations in biology, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2007. · Zbl 1185.92006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.