×

Symbolic partition in chaotic maps. (English) Zbl 1466.37062

Summary: In this work, we only use data on the unstable manifold to locate the partition boundaries by checking folding points at different levels, which practically coincide with homoclinic tangencies. The method is then applied to the classic two-dimensional Hénon map and a well-known three-dimensional map. Comparison with previous results is made in the Hénon case, and Lyapunov exponents are computed through the metric entropy based on the partition to show the validity of the current scheme.
©2021 American Institute of Physics

MSC:

37M25 Computational methods for ergodic theory (approximation of invariant measures, computation of Lyapunov exponents, entropy, etc.)
37M22 Computational methods for attractors of dynamical systems
37M21 Computational methods for invariant manifolds of dynamical systems
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior

References:

[1] Collet, P.; Eckmann, J.-P., Iterated Maps on the Interval as Dynamical Systems (2009), Springer Science & Business Media
[2] Dong, C.; Lan, Y., A variational approach to connecting orbits in nonlinear dynamical systems, Phys. Lett. A, 378, 705-712 (2014) · Zbl 1331.37084 · doi:10.1016/j.physleta.2014.01.001
[3] Cvitanovic, P., Artuso, R., Mainieri, R., Tanner, G., Vattay, G., Whelan, N., and Wirzba, A., Chaos: Classical and Quantum (Niels Bohr Institute, Copenhagen, 2005), Vol. 69, available at https://www.chaosbook.org.
[4] Hénon, M., A two-dimensional mapping with a strange attractor, Commun. Math. Phys., 50, 69-77 (1976) · Zbl 0576.58018 · doi:10.1007/BF01608556
[5] Giovannini, F.; Politi, A., Generating partitions in Hénon-type maps, Phys. Lett. A, 161, 332-336 (1992) · Zbl 0979.37502 · doi:10.1016/0375-9601(92)90556-2
[6] Grassberger, P.; Kantz, H., Generating partitions for the dissipative Hénon map, Phys. Lett. A, 113, 235-238 (1985) · doi:10.1016/0375-9601(85)90016-7
[7] Hansen, K. T.
[8] Grassberger, P.; Kantz, H.; Moenig, U., On the symbolic dynamics of the Hénon map, J. Phys. A: Math. Gen, 22, 5217 (1989) · Zbl 0722.58016 · doi:10.1088/0305-4470/22/24/011
[9] Jaeger, L.; Kantz, H., Structure of generating partitions for two-dimensional maps, J. Phys. A: Math. Gen., 30, L567 (1997) · Zbl 0922.58050 · doi:10.1088/0305-4470/30/16/003
[10] Giovannini, F.; Politi, A., Homoclinic tangencies, generating partitions and curvature of invariant manifolds, J. Phys. A: Math. Gen, 24, 1837 (1999) · Zbl 0733.58033 · doi:10.1088/0305-4470/24/8/024
[11] Cvitanović, P.; Gunaratne, G. H.; Procaccia, I., Topological and metric properties of Hénon-type strange attractors, Phys. Rev. A, 38, 1503 (1988) · doi:10.1103/PhysRevA.38.1503
[12] Kantz, H.; Jaeger, L., Improved cost functions for modelling of noisy chaotic time series, Physica D, 109, 59-69 (1997) · Zbl 0926.62082 · doi:10.1016/S0167-2789(97)00159-0
[13] Politi, A., “Symbolic encoding in dynamical systems,” in From Statistical Physics to Statistical Inference and Back (Springer, 1994), pp. 293-309.
[14] Biham, O.; Wenzel, W., Characterization of unstable periodic orbits in chaotic attractors and repellers, Phys. Rev. Lett., 63, 819 (1989) · Zbl 0938.37505 · doi:10.1103/PhysRevLett.63.819
[15] Mitchell, K. A., Partitioning two-dimensional mixed phase spaces, Physica D, 241, 1718-1734 (2012) · Zbl 1417.37188 · doi:10.1016/j.physd.2012.07.004
[16] Mitchell, K. A., The topology of nested homoclinic and heteroclinic tangles, Physica D, 238, 737-763 (2009) · Zbl 1160.37329 · doi:10.1016/j.physd.2009.01.004
[17] Collins, P., Symbolic dynamics from homoclinic tangles, Int. J. Bifurcation Chaos, 12, 605-617 (2002) · Zbl 1044.37035 · doi:10.1142/S0218127402004565
[18] Collins, P., Forcing relations for homoclinic orbits of the Smale horseshoe map, Exp. Math., 14, 75-86 (2005) · Zbl 1107.37031 · doi:10.1080/10586458.2005.10128909
[19] Easton, R. W., Trellises formed by stable and unstable manifolds in the plane, Trans. Am. Math. Soc., 294, 719-732 (1986) · Zbl 0594.58032 · doi:10.1090/S0002-9947-1986-0825732-X
[20] Rom-Kedar, V., Homoclinic tangles-classification and applications, Nonlinearity, 7, 441 (1994) · Zbl 0856.70014 · doi:10.1088/0951-7715/7/2/008
[21] Ruckerl, B.; Jung, C., Scaling properties of a scattering system with an incomplete horseshoe, J. Phys. A: Math. Gen., 27, 55-77 (1994) · Zbl 0804.58040 · doi:10.1088/0305-4470/27/1/005
[22] Badii, R.; Brun, E.; Finardi, M.; Flepp, L.; Holzner, R.; Parisi, J.; Reyl, C.; Simonet, J., Progress in the analysis of experimental chaos through periodic orbits, Rev. Mod. Phys., 66, 1389 (1994) · doi:10.1103/RevModPhys.66.1389
[23] Biham, O.; Wenzel, W., Unstable periodic orbits and the symbolic dynamics of the complex Hénon map, Phys. Rev. A, 42, 4639 (1990) · doi:10.1103/PhysRevA.42.4639
[24] Cvitanović, P., Periodic orbits as the skeleton of classical and quantum chaos, Physica D, 51, 138-151 (1991) · Zbl 0744.58013 · doi:10.1016/0167-2789(91)90227-Z
[25] Davidchack, R. L.; Lai, Y.-C.; Bollt, E. M.; Dhamala, M., Estimating generating partitions of chaotic systems by unstable periodic orbits, Phys. Rev. E, 61, 1353 (2000) · doi:10.1103/PhysRevE.61.1353
[26] Plumecoq, J.; Lefranc, M., From template analysis to generating partitions: I: Periodic orbits, knots and symbolic encodings, Physica D, 144, 231-258 (2000) · Zbl 0978.37006 · doi:10.1016/S0167-2789(00)00082-8
[27] Plumecoq, J.; Lefranc, M., From template analysis to generating partitions: II: Characterization of the symbolic encodings, Physica D, 144, 259-278 (2000) · Zbl 0978.37007 · doi:10.1016/S0167-2789(00)00083-X
[28] Kennel, M. B.; Buhl, M., Estimating good discrete partitions from observed data: Symbolic false nearest neighbors, Phys. Rev. Lett., 91, 084102 (2003) · doi:10.1103/PhysRevLett.91.084102
[29] Buhl, M.; Kennel, M. B., Statistically relaxing to generating partitions for observed time-series data, Phys. Rev. E, 71, 046213 (2005) · doi:10.1103/PhysRevE.71.046213
[30] Patil, N. S.; Cusumano, J. P., Empirical generating partitions of driven oscillators using optimized symbolic shadowing, Phys. Rev. E, 98, 032211 (2018) · doi:10.1103/PhysRevE.98.032211
[31] Gao, Z.; Jin, N., Complex network from time series based on phase space reconstruction, Chaos, 19, 033137 (2009) · doi:10.1063/1.3227736
[32] Donner, R. V.; Zou, Y.; Donges, J. F.; Marwan, N.; Kurths, J., Recurrence networks—A novel paradigm for nonlinear time series analysis, New J. Phys., 12, 033025 (2010) · Zbl 1360.90045 · doi:10.1088/1367-2630/12/3/033025
[33] Nakamura, T.; Tanizawa, T.; Small, M., Constructing networks from a dynamical system perspective for multivariate nonlinear time series, Phys. Rev. E, 93, 032323 (2016) · doi:10.1103/PhysRevE.93.032323
[34] Sakellariou, K.; Stemler, T.; Small, M., Markov modeling via ordinal partitions: An alternative paradigm for network-based time-series analysis, Phys. Rev. E, 100, 062307 (2019) · doi:10.1103/PhysRevE.100.062307
[35] Gonchenko, A. S.; Gonchenko, S. V., Variety of strange pseudohyperbolic attractors in three-dimensional generalized Hénon maps, Physica D, 337, 43 (2016) · Zbl 1376.37047 · doi:10.1016/j.physd.2016.07.006
[36] Gonchenko, A.; Gonchenko, S.; Kazakov, A.; Turaev, D., Simple scenarios of onset of chaos in three-dimensional maps, Int. J. Bifurcation Chaos, 24, 1440005 (2014) · Zbl 1300.37024 · doi:10.1142/S0218127414400057
[37] Gonchenko, S. V.; Ovsyannikov, I.; Simó, C.; Turaev, D., Three-dimensional Hénon-like maps and wild Lorenz-like attractors, Int. J. Bifurcation Chaos, 15, 3493-3508 (2005) · Zbl 1097.37023 · doi:10.1142/S0218127405014180
[38] Fahner, G.; Grassberger, P., Entropy estimates for dynamical systems, Complex. Syst., 1, 1093-1098 (1987) · Zbl 0666.58027
[39] Badii, R.; Politi, A., Hausdorff dimension and uniformity factor of strange attractors, Phys. Rev. Lett., 52, 1661-1664 (1984) · doi:10.1103/PhysRevLett.52.1661
[40] Ott, E., Chaos in Dynamical Systems (2002), Cambridge University Press · Zbl 1006.37001
[41] Hobson, D., An efficient method for computing invariant manifolds of planar maps, J. Comput. Phys., 104, 14-22 (1993) · Zbl 0768.65025 · doi:10.1006/jcph.1993.1002
[42] Benedicks, M.; Carleson, L., The dynamics of the Hénon map, Ann. Math., 133, 73-169 (1991) · Zbl 0724.58042 · doi:10.2307/2944326
[43] Simó, C., On the Hénon-Pomeau attractor, J. Stat. Phys., 21, 465-494 (1979) · doi:10.1007/BF01009612
[44] Schürmann, T.; Grassberger, P., Entropy estimation of symbol sequences, Chaos, 6, 414-427 (1996) · Zbl 1055.94508 · doi:10.1063/1.166191
[45] Schürmann, T., Bias analysis in entropy estimation, J. Phys. A: Math. Gen., 37, 295-301 (2004) · Zbl 1055.94006 · doi:10.1088/0305-4470/37/27/L02
[46] Schürmann, T., A note on entropy estimation, Neural Comput., 27, 2097-2106 (2015) · Zbl 1473.94030 · doi:10.1162/NECO_a_00775
[47] d’Alessandro, G.; Grassberger, P.; Isola, S.; Politi, A., On the topology of the Hénon map, J. Phys. A: Math. Gen., 23, 5285 (1990) · Zbl 0716.58010 · doi:10.1088/0305-4470/23/22/017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.