×

Three-dimensional Hénon-like maps and wild Lorenz-like attractors. (English) Zbl 1097.37023

Summary: We discuss a rather new phenomenon in chaotic dynamics connected with the fact that some three-dimensional diffeomorphisms can possess wild Lorenz-type strange attractors. These attractors persist for open domains in the parameter space. In particular, we report on the existence of such domains for a three-dimensional Hénon map (a simple quadratic map with a constant Jacobian which occurs in a natural way in unfoldings of several types of homoclinic bifurcations). Among other observations, we have evidence that there are different types of Lorenz-like attractor domains in the parameter space of the 3D Hénon map. In all cases, the maximal Lyapunov exponent \(\Gamma_1\) is positive. Concerning the next Lyapunov exponent \(\Gamma_2\) there are open domains where it is definitely positive, others where it is definitely negative and, finally, domains where it cannot be distinguished numerically from zero (i.e., \(|\Gamma_2| < \rho\), where \(\rho\) is some tolerance ranging between \(10^{-5}\) and \(10^{-6}\)). Furthermore, several other types of interesting attractors have been found in this family of 3D Hénon maps.

MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37E99 Low-dimensional dynamical systems
37D30 Partially hyperbolic systems and dominated splittings
37G15 Bifurcations of limit cycles and periodic orbits in dynamical systems
37G35 Dynamical aspects of attractors and their bifurcations
Full Text: DOI

References:

[1] Afraimovich V. S., Sov. Math. Dokl. 15 pp 1761–
[2] Afraimovich V. S., Sov. Phys. Dokl. 22 pp 253–
[3] Afraimovich V. S., Russ. Math. Surv. 36
[4] Afraimovich V. S., Sov. Math. Dokl. 25 pp 101–
[5] Afraimovich V. S., Trans. Mosc. Math. Soc. 44 pp 153–
[6] V. S. Afraimovich and L. P. Shilnikov, Methods of the Qualitative Theory of Differential Equations (Gorki, 1983) pp. 3–26.
[7] V. S. Afraimovich and L. P. Shilnikov, Nonlinear Dynamics and Turbulence, Interaction Mech. Math. Ser. (Pitman, 1983) pp. 1–34.
[8] DOI: 10.1080/03091928508219264 · Zbl 0604.76032 · doi:10.1080/03091928508219264
[9] DOI: 10.1016/0167-2789(85)90093-4 · Zbl 0595.58030 · doi:10.1016/0167-2789(85)90093-4
[10] Belykh V. N., Diff. Eqs. 20 pp 1184–
[11] Bosch M., Int. J. Bifurcation and Chaos 1 pp 183–
[12] Bosch M., Int. J. Bifurcation and Chaos 1 pp 339–
[13] DOI: 10.1017/S0143385700009950 · Zbl 0876.58032 · doi:10.1017/S0143385700009950
[14] DOI: 10.1088/0951-7715/11/3/015 · Zbl 0937.37013 · doi:10.1088/0951-7715/11/3/015
[15] V. V. Bykov, Methods of the Qualitative Theory of Differential Equations (Gorky, 1980) pp. 44–72.
[16] V. V. Bykov and A. L. Shilnikov, Methods of Qualitative Theory and Bifurcation Theory (Gorky, 1989) pp. 151–159.
[17] DOI: 10.1016/0167-2789(93)90288-C · Zbl 0799.58054 · doi:10.1016/0167-2789(93)90288-C
[18] DOI: 10.1512/iumj.1972.21.21017 · doi:10.1512/iumj.1972.21.21017
[19] Gonchenko S. V., Russ. Acad. Sci. Dokl. Math. 47 pp 410–
[20] Gonchenko S. V., Contemp. Math. Appl. 7 pp 92–
[21] DOI: 10.1007/BF02465190 · Zbl 0939.37015 · doi:10.1007/BF02465190
[22] Gorodetskij A. S., Proc. Steklov Inst. Math. 4 pp 90–
[23] Gorodetskij A., Funct. Anal. Appl. 39
[24] DOI: 10.1007/978-1-4612-6374-6_25 · doi:10.1007/978-1-4612-6374-6_25
[25] DOI: 10.1007/BF02684769 · Zbl 0436.58018 · doi:10.1007/BF02684769
[26] DOI: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[27] DOI: 10.1016/0021-8928(84)90078-9 · Zbl 0571.70022 · doi:10.1016/0021-8928(84)90078-9
[28] DOI: 10.1070/SM1987v058n02ABEH003120 · Zbl 0628.58044 · doi:10.1070/SM1987v058n02ABEH003120
[29] DOI: 10.1070/SM1992v073n02ABEH002553 · Zbl 0774.58030 · doi:10.1070/SM1992v073n02ABEH002553
[30] Pisarevsky V., Reg. Chaotic Dyn. 2 pp 123–
[31] DOI: 10.1088/0951-7715/2/4/001 · Zbl 0704.58031 · doi:10.1088/0951-7715/2/4/001
[32] DOI: 10.1137/0523070 · Zbl 0758.58028 · doi:10.1137/0523070
[33] Rychlik M. R., Ergod. Th. Dyn. Syst. 10 pp 793–
[34] A. L. Shilnikov, Methods of Qualitative Theory of Differential Equations (Gorky, 1986) pp. 180–193.
[35] DOI: 10.1016/0167-2789(93)90292-9 · Zbl 0783.58052 · doi:10.1016/0167-2789(93)90292-9
[36] DOI: 10.1142/S0218127493000933 · Zbl 0885.58080 · doi:10.1142/S0218127493000933
[37] DOI: 10.1142/S0218127404010539 · Zbl 1077.37509 · doi:10.1142/S0218127404010539
[38] Shilnikov L. P., Sov. Math. Dokl. 9 pp 624–
[39] Shilnikov L. P., Russ. Math. Surv. 36
[40] DOI: 10.1142/9789812798596 · doi:10.1142/9789812798596
[41] DOI: 10.1142/9789812798558 · doi:10.1142/9789812798558
[42] DOI: 10.1016/0375-9601(80)90466-1 · doi:10.1016/0375-9601(80)90466-1
[43] Tucker W., C. R. Acad. Sci. Paris Sér. I Math. 329 pp 1197–
[44] DOI: 10.4213/sm300 · doi:10.4213/sm300
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.