×

Microlocal analysis of the bulk-edge correspondence. (English) Zbl 1462.81214

Summary: The bulk-edge correspondence predicts that interfaces between topological insulators support robust currents. We prove this principle for PDEs that are periodic away from an interface. Our approach relies on semiclassical methods. It suggests novel perspectives for the analysis of topologically protected transport.

MSC:

81V70 Many-body theory; quantum Hall effect
35J10 Schrödinger operator, Schrödinger equation
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
35Q40 PDEs in connection with quantum mechanics
82D20 Statistical mechanics of solids
35P05 General topics in linear spectral theory for PDEs
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
35P20 Asymptotic distributions of eigenvalues in context of PDEs
35S05 Pseudodifferential operators as generalizations of partial differential operators
46L87 Noncommutative differential geometry
19L10 Riemann-Roch theorems, Chern characters

References:

[1] Ammari, H., Fitzpatrick, B., Lee, H., Hiltunen, Orvehed, E., Yu, S.: Honeycomb-lattice Minnaert bubbles. Preprint arXiv:1811.03905
[2] Avila, JC; Schulz-Baldes, H.; Villegas-Blas, C., Topological invariants of edge states for periodic two-dimensional models, Math. Phys. Anal. Geom., 16, 136-170 (2013) · Zbl 1271.81210
[3] Bal, G., Continuous bulk and interface description of topological insulators, J. Math. Phys., 60, 8, 081506 (2019) · Zbl 1435.82027
[4] Beals, R., Characterization of pseudodifferential operators and applications, Duke Math. J., 44, 45-57 (1977) · Zbl 0353.35088
[5] Bellissard, J.; van Elst, A.; Schulz-Baldes, H., The noncommutative geometry of the quantum Hall effect, Topol. Phys. J. Math. Phys., 35, 10, 5373-5451 (1994) · Zbl 0824.46086
[6] Berkolaiko, G.; Comech, A., Symmetry and Dirac points in graphene spectrum, J. Spectr. Theory, 8, 3, 1099-1147 (2018) · Zbl 1411.35092
[7] Berry, MV, Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. Lond. Ser. A, 392, 1802, 45-57 (1984) · Zbl 1113.81306
[8] Bourne, C.; Kellendonk, J.; Rennie, A., The K-theoretic bulk-edge correspondence for topological insulators, Ann. Henri Poincaré, 18, 5, 1833-1866 (2017) · Zbl 1372.82023
[9] Bourne, C.; Rennie, A., Chern numbers, localisation and the bulk-edge correspondence for continuous models of topological phases, Math. Phys. Anal. Geom., 21, 16 (2018) · Zbl 1398.82049
[10] Braverman, M., Spectral flows of Toeplitz operators and bulk-edge correspondence, Lett. Math. Phys., 109, 10, 2271-2289 (2019) · Zbl 1426.58005
[11] Buslaev, VS, Semiclassical approximation for equations with periodic coefficients, Russ. Math. Surv., 42, 97-125 (1987) · Zbl 0698.35130
[12] Combes, J-M; Germinet, F., Edge and impurity effects on quantization of Hall currents, Commun. Math. Phys., 256, 1, 159-180 (2005) · Zbl 1114.81085
[13] Delplace, P.; Marston, JB; Venaille, A., Topological origin of equatorial waves, Science, 358, 6366, 1075-1077 (2017) · Zbl 1404.86016
[14] Dimassi, M., Asymptotic expansions of slow perturbations of the periodic Schrödinger operator, Commun. Partial Differ. Equ., 18, 5-6, 771-803 (1993) · Zbl 0784.35071
[15] Dimassi, M.; Duong, AT, Trace asymptotics formula for the Schrödinger operators with constant magnetic fields, J. Math. Anal. Appl., 416, 1, 427-448 (2014) · Zbl 1300.35111
[16] Dimassi, M.; Guillot, JC; Ralston, J., Semiclassical asymptotics in magnetic Bloch bands, J. Phys. A, 35, 35, 7597-7605 (2002) · Zbl 1066.81541
[17] Dimassi, M.; Guillot, JC; Ralston, J., On effective Hamiltonians for adiabatic perturbations of magnetic Schrödinger operators, Asymptot. Anal., 40, 2, 137-146 (2004) · Zbl 1130.81344
[18] Dimassi, M.; Sjöstrand, J., Spectral Asymptotics in the Semi-Classical Limit (1999), London: London Mathematical Society, London · Zbl 0926.35002
[19] Dimassi, M.; Zerzeri, M., A local trace formula for resonances of perturbed periodic Schrödinger operators, J. Funct. Anal., 198, 1, 142-159 (2003) · Zbl 1090.35065
[20] Drouot, A.: The bulk-edge correspondence for continuous dislocated systems. Preprint arXiv:1810.10603 · Zbl 1428.82009
[21] Drouot, A., Characterization of edge states in perturbed honeycomb structures, Pure Appl. Anal., 1, 3, 385-445 (2019) · Zbl 1423.35275
[22] Drouot, A., The bulk-edge correspondence for continuous honeycomb lattices, Commun. Partial Differ. Equ., 44, 12, 1406-1430 (2019) · Zbl 1428.82009
[23] Drouot, A.: Ubiquity of conical points in topological insulators. Preprint arXiv:004.07068 · Zbl 1516.57046
[24] Drouot, A., Weinstein, M.: Edge states and the Valley Hall Effect. Preprint arXiv:1910.03509 · Zbl 1442.82003
[25] Drouot, A., Fefferman, C.L., Weinstein, M.I.: Defect modes for dislocated periodic media. Preprint arXiv:1810.05875 · Zbl 1508.81831
[26] Dyn’kin, EM, An operator calculus based upon the Cauchy-Green formula, J. Soviet Math., 4, 4, 329-34 (1975) · Zbl 0338.47011
[27] Elbau, P.; Graf, GM, Equality of bulk and edge Hall conductances revisted, Commun. Math. Phys., 229, 415-432 (2002) · Zbl 1001.81091
[28] Elgart, A.; Graf, GM; Schenker, JH, Equality of the bulk and the edge Hall conductances in a mobility gap, Commun. Math. Phys., 259, 185-221 (2005) · Zbl 1086.81081
[29] Faure, F.: Manifestation of the topological index formula in quantum waves and geophysical waves. Preprint arXiv:1901.10592
[30] Fedosov, BV, A direct proof of the formula for the index of an elliptic system in Euclidean space, Funkcional. Anal. i Prilozen., 4, 4, 83-84 (1970) · Zbl 0244.35073
[31] Fefferman, CL; Lee-Thorp, JP; Weinstein, MI, Edge states in honeycomb structures, Ann. PDE, 2, 12 (2016) · Zbl 1404.35128
[32] Fefferman, C.L., Lee-Thorp, J.P., Weinstein, M.I.: Topologically protected states in one-dimensional systems. vol. 247, No. 1173. Memoirs of the American Mathematical Society (2017) · Zbl 1379.35076
[33] Fefferman, CL; Lee-Thorp, JP; Weinstein, MI, Honeycomb Schroedinger operators in the strong-binding regime, Commun. Pure Appl. Math., 71, 6, 1178-1270 (2018) · Zbl 1414.35061
[34] Fefferman, CL; Weinstein, MI, Honeycomb lattice potentials and Dirac points, J. Am. Math. Soc., 25, 4, 1169-1220 (2012) · Zbl 1316.35214
[35] Freund, S.; Teufel, S., Peierls substitution for magnetic Bloch bands, Anal. PDE, 9, 4, 773-811 (2016) · Zbl 1343.81088
[36] Gérard, C.; Martinez, A.; Sjöstrand, S., A mathematical approach to the effective Hamiltonian in perturbed periodic problems, Commun. Math. Phys., 142, 217-244 (1991) · Zbl 0753.35057
[37] Graf, GM; Porta, M., Bulk-edge correspondence for two-dimensional topological insulators, Commun. Math. Phys., 324, 3, 851-895 (2012) · Zbl 1291.82120
[38] Graf, GM; Shapiro, J., The bulk-edge correspondence for disordered chiral chains, Commun. Math. Phys., 363, 3, 829-846 (2018) · Zbl 1401.82031
[39] Graf, GM; Tauber, C., Bulk-edge correspondence for two-dimensional Floquet topological insulators, Ann. Henri Poincaré, 19, 3, 709-741 (2018) · Zbl 1392.82008
[40] Guillot, JC; Ralston, J.; Trubowitz, E., Semi-classical methods in solid state physics, Commun. Math. Phys., 116, 401-415 (1988) · Zbl 0672.35014
[41] Haldane, FDM; Raghu, S., Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry, Phys. Rev. Lett., 100, 1, 013904 (2008)
[42] Halperin, BI, Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential, Phys. Rev. B, 25, 4, 2185-2190 (1982)
[43] Hatsugai, Y., The Chern number and edge states in the integer quantum hall effect, Phys. Rev. Lett., 71, 3697-3700 (1993) · Zbl 0972.81712
[44] Helffer, B.; Sjöstrand, J., Equation de Schrödinger avec champ magnétique et équation de Harper (1989), Berlin: Springer, Berlin · Zbl 0699.35189
[45] Helffer, B.; Sjöstrand, J., On diamagnetism and de Haas-van Alphen effect, Ann. Inst. H. Poincaré Phys. Théor., 52, 4, 303-375 (1990) · Zbl 0715.35070
[46] Hörmander, L., The Analysis of Linear Partial Differential Operators. III. Pseudodifferential Operators (1985), Berlin: Springer-Verlag, Berlin · Zbl 0601.35001
[47] Karpeshina, Y., Spectral properties of the periodic magnetic Schrödinger operator in the high-energy region. Two-dimensional case, Commun. Math. Phys., 251, 3, 473-514 (2004) · Zbl 1059.81058
[48] Kellendonk, J.; Richter, T.; Schulz-Baldes, H., Edge current channels and Chern numbers in the integer quantum Hall effect, Rev. Math. Phys., 14, 1, 87-119 (2002) · Zbl 1037.81106
[49] Kellendonk, J.; Schulz-Baldes, H., Quantization of edge currents for continuous magnetic operators, J. Funct. Anal., 209, 2, 388-413 (2004) · Zbl 1078.81024
[50] Kellendonk, J.; Schulz-Baldes, H., Boundary maps for crossed products with an application to the quantum Hall effect, Commun. Math. Phys., 3, 3, 611-637 (2004) · Zbl 1084.46058
[51] Khanikaev, AB; Mousavi, SH; Tse, W-K; Kargarian, M.; MacDonald, AH; Shvets, G., Photonic topological insulators, Nat. Mater., 12, 3, 233-239 (2013)
[52] Kubota, Y., Controlled topological phases and bulk-edge correspondence, Commun. Math. Phys., 349, 2, 493-525 (2017) · Zbl 1357.82013
[53] Kuchment, PA, An overview of periodic elliptic operators, Bull. Am. Math. Soc., 53, 3, 343-414 (2016) · Zbl 1346.35170
[54] Lee-Thorp, JP; Weinstein, MI; Zhu, Y., Elliptic operators with honeycomb symmetry: dirac points, edge states and applications to photonic graphene, Arch. Ration. Mech. Anal., 232, 1-63 (2019) · Zbl 1410.78024
[55] Monaco, D., Chern and Fu-Kane-Mele Invariants as Topological Obstructions, 201-222 (2017), Berlin: Springer, Berlin · Zbl 1374.81101
[56] Mohamed, A., Asymptotic of the density of states for the Schrödinger operator with periodic electromagnetic potential, J. Math. Phys., 38, 8, 4023-4051 (1997) · Zbl 0883.47045
[57] Moore, JD, Lectures on Seiberg-Witten Invariants (2001), Berlin: Springer, Berlin · Zbl 1036.57014
[58] Panati, G., Triviality of Bloch and Bloch-Dirac bundles, Ann. Henri Poincaré, 8, 5, 995-1011 (2007) · Zbl 1375.81102
[59] Panati, G.; Spohn, H.; Teufel, S., Space-adiabatic perturbation theory, Adv. Theor. Math. Phys., 7, 1, 145-204 (2003)
[60] Panati, G.; Spohn, H.; Teufel, S., Effective dynamics for Bloch electrons: Peierls substitution and beyond, Commun. Math. Phys., 242, 3, 547-578 (2003) · Zbl 1058.81020
[61] Parnovski, L.; Sobolev, A., Bethe-Sommerfeld conjecture for periodic operators with strong perturbations, Invent. Math., 181, 3, 467-540 (2010) · Zbl 1200.47067
[62] Perrot, M.; Delplace, P.; Venaille, A., Topological transition in stratified fluids, Nat. Phys., 15, 781-784 (2019)
[63] Raghu, S.; Haldane, FDM, Analogs of quantum-Hall-effect edge states in photonic crystals, Phys. Rev. A, 78, 3, 033834 (2008)
[64] Reed, M.; Simon, B., Methods of Modern Mathematical Physics: Analysis of Operators (1978), Cambridge: Academic Press, Cambridge · Zbl 0401.47001
[65] Shapiro, J.; Tauber, C., Strongly disordered Floquet topological systems, Ann. Henri Poincaré, 20, 6, 1837-1875 (2019) · Zbl 1482.82051
[66] Simon, B., Holonomy, the quantum adiabatic theorem, and Berry’s phase, Phys. Rev. Lett., 51, 24, 2167 (1983)
[67] Sjöstrand, J.; Zworski, M., Complex scaling and the distribution of scattering poles, J. Am. Math. Soc., 4, 4, 729-769 (1991) · Zbl 0752.35046
[68] Sjöstrand, J.; Zworski, M., Elementary linear algebra for advanced spectral problems, Ann. Inst. Fourier, 57, 7, 2095-2141 (2007) · Zbl 1140.15009
[69] Taarabt, A.: Equality of bulk and edge Hall conductances for continuous magnetic random Schrödinger operators. Preprint arXiv:1403.7767
[70] Thouless, DJ; Kohmoto, M.; Nightgale, MP; Den Nijs, M., Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett., 49, 405 (1982)
[71] Waterstraat, N.: Fredholm operators and spectral flow. Lecture notes arXiv:1603.02009 · Zbl 1518.47024
[72] Yang, Z.; Gao, F.; Shi, X.; Lin, X.; Gao, Z.; Chong, Y.; Zhang, B., Topological acoustics, Phys. Rev. Lett., 114, 114301 (2015)
[73] Zworski, M., Semiclassical Analysis (2012), Providence: American Mathematical Society, Providence · Zbl 1252.58001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.