×

The bulk-edge correspondence for disordered chiral chains. (English) Zbl 1401.82031

Summary: We study one-dimensional insulators obeying a chiral symmetry in the single-particle picture. The Fermi level is assumed to lie in a mobility gap. Topological indices are defined for infinite (bulk) or half-infinite (edge) systems, and it is shown that for a given Hamiltonian with nearest neighbor hopping the two indices are equal. We also give a new formulation of the index in terms of the Lyapunov exponents of the zero energy Schrödinger equation, which illustrates the conditions for a topological phase transition occurring in the mobility gap regime.

MSC:

82C44 Dynamics of disordered systems (random Ising systems, etc.) in time-dependent statistical mechanics
82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics
35Q41 Time-dependent Schrödinger equations and Dirac equations
82D30 Statistical mechanics of random media, disordered materials (including liquid crystals and spin glasses)

References:

[1] Avron, J. E.; Sadun, L., Fredholm indices and the phase diagram of quantum Hall systems, J. Math. Phys., 42, 1-14, (2001) · Zbl 1063.47508 · doi:10.1063/1.1331317
[2] Avron, J.; Seiler, R.; Simon, B., The index of a pair of projections, J. Funct. Anal., 120, 220-237, (1994) · Zbl 0822.47033 · doi:10.1006/jfan.1994.1031
[3] Bellissard, J.; Elst, A.; Schulz-Baldes, H., The noncommutative geometry of the quantum Hall effect, J. Math. Phys., 35, 5373-5451, (1994) · Zbl 0824.46086 · doi:10.1063/1.530758
[4] Booss B., Bleecker D.: Topology and Analysis: The Atiyah-Singer Index Formula and Gauge-Theoretic Physics. Springer, Berlin (1989) · Zbl 0551.58031
[5] Brouwer, P. W.; etal., Delocalization in coupled one-dimensional chains, Phys. Rev. Lett., 81, 862-865, (1998) · doi:10.1103/PhysRevLett.81.862
[6] Elbau, P.; Graf, G. M., Equality of bulk and edge Hall conductance revisited, Commun. Math. Phys., 229, 415-432, (2002) · Zbl 1001.81091 · doi:10.1007/s00220-002-0698-z
[7] Elgart, A.; Graf, G. M.; Schenker, J., Equality of the bulk and edge Hall conductances in a mobility gap, Commun. Math. Phys., 259, 185-221, (2005) · Zbl 1086.81081 · doi:10.1007/s00220-005-1369-7
[8] Fulga, I. C.; etal., Scattering formula for the topological quantum number of a disordered multimode wire, Phys. Rev. B., 83, 155429, (2011) · doi:10.1103/PhysRevB.83.155429
[9] Graf, G.M., Shapiro, J.: Complete localization for disordered chiral chains (2018) (in preparation)
[10] Heinzner, P.; Huckleberry, A.; Zirnbauer, M., Symmetry classes of disordered fermions, Commun. Math. Phys., 257, 725-771, (2005) · Zbl 1092.82020 · doi:10.1007/s00220-005-1330-9
[11] Katsura, H.; Koma, T., The noncommutative index theorem and the periodic table for disordered topo logical insulators and superconductors, J. Math. Phys., 59, 031903, (2018) · Zbl 1390.82029 · doi:10.1063/1.5026964
[12] Kitaev, A., Periodic table for topological insulators and superconductors, AIP Conf. Proc., 1134, 22-30, (2009) · Zbl 1180.82221 · doi:10.1063/1.3149495
[13] Kunz, H.; Souillard, B., Sur le spectre des opérateurs aux différences finies aléatoires, Commun. Math. Phys., 78, 201-246, (1980) · Zbl 0449.60048 · doi:10.1007/BF01942371
[14] Mondragon-Shem, I.; etal., Topological criticality in the chiral-symmetric AIII class at strong disor der, Phys. Rev. Lett., 113, 046802, (2014) · doi:10.1103/PhysRevLett.113.046802
[15] Prodan E., Schulz-Baldes H.: Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics. Springer, Berlin (2016) https://doi.org/10.1007/978-3-319-29351-6_4 · Zbl 1342.82002 · doi:10.1007/978-3-319-29351-6_4
[16] Prodan, E.; Schulz-Baldes, H., Non-commutative odd Chern numbers and topological phases of disor dered chiral systems, J. Funct. Anal., 271, 1150-1176, (2016) · Zbl 1344.82055 · doi:10.1016/j.jfa.2016.06.001
[17] Reed M., Simon B.: Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press Inc., Cambridge (1980) · Zbl 0459.46001
[18] Ryu, S.; etal., Topological insulators and superconductors: tenfold way and dimensional hierarchy, New J. Phys., 12, 065010, (2010) · doi:10.1088/1367-2630/12/6/065010
[19] Schnyder, A. P.; etal., Classification of topological insulators and superconductors in three spatial dimensions, Phys. Rev. B., 78, 195125, (2008) · doi:10.1103/PhysRevB.78.195125
[20] Su, W. P.; Schrieffer, J. R.; Heeger, A. J., Solitons in polyacetylene, Phys. Rev. Lett., 42, 1698-1701, (1979) · doi:10.1103/PhysRevLett.42.1698
[21] Zak, J., Berry’s phase for energy bands in solids, Phys. Rev. Lett., 62, 2747-2750, (1989) · doi:10.1103/PhysRevLett.62.2747
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.