×

Complexity and the bulk volume, a New York time story. (English) Zbl 1414.81191

Summary: We study the boundary description of the volume of maximal Cauchy slices using the recently derived equivalence between bulk and boundary symplectic forms. The volume of constant mean curvature slices is known to be canonically conjugate to “York time”. We use this to construct the boundary deformation that is conjugate to the volume in a handful of examples, such as empty AdS, a backreacting scalar condensate, or the thermofield double at infinite time. We propose a possible natural boundary interpretation for this deformation and use it to motivate a concrete version of the complexity=volume conjecture, where the boundary complexity is defined as the energy of geodesics in the Kähler geometry of half sided sources. We check this conjecture for Bañados geometries and a mini-superspace version of the thermofield double state. Finally, we show that the precise dual of the quantum information metric for marginal scalars is given by a particularly simple symplectic flux, instead of the volume as previously conjectured.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83C57 Black holes
83E30 String and superstring theories in gravitational theory
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
53Z05 Applications of differential geometry to physics

References:

[1] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE]. · Zbl 1228.83110 · doi:10.1103/PhysRevLett.96.181602
[2] X. Dong, The Gravity Dual of Renyi Entropy, Nature Commun.7 (2016) 12472 [arXiv:1601.06788] [INSPIRE]. · doi:10.1038/ncomms12472
[3] D.L. Jafferis, A. Lewkowycz, J. Maldacena and S.J. Suh, Relative entropy equals bulk relative entropy, JHEP06 (2016) 004 [arXiv:1512.06431] [INSPIRE]. · Zbl 1388.83268 · doi:10.1007/JHEP06(2016)004
[4] A. Almheiri, X. Dong and D. Harlow, Bulk Locality and Quantum Error Correction in AdS/CFT, JHEP04 (2015) 163 [arXiv:1411.7041] [INSPIRE]. · Zbl 1388.81095 · doi:10.1007/JHEP04(2015)163
[5] F. Pastawski, B. Yoshida, D. Harlow and J. Preskill, Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence, JHEP06 (2015) 149 [arXiv:1503.06237] [INSPIRE]. · Zbl 1388.81094 · doi:10.1007/JHEP06(2015)149
[6] P. Hayden, S. Nezami, X.-L. Qi, N. Thomas, M. Walter and Z. Yang, Holographic duality from random tensor networks, JHEP11 (2016) 009 [arXiv:1601.01694] [INSPIRE]. · Zbl 1390.83344 · doi:10.1007/JHEP11(2016)009
[7] D. Stanford and L. Susskind, Complexity and Shock Wave Geometries, Phys. Rev.D 90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].
[8] L. Susskind, Computational Complexity and Black Hole Horizons, Fortsch. Phys.64 (2016) 44 [arXiv:1403.5695] [INSPIRE]. · Zbl 1429.81020 · doi:10.1002/prop.201500093
[9] M. Miyaji, T. Numasawa, N. Shiba, T. Takayanagi and K. Watanabe, Distance between Quantum States and Gauge-Gravity Duality, Phys. Rev. Lett.115 (2015) 261602 [arXiv:1507.07555] [INSPIRE]. · doi:10.1103/PhysRevLett.115.261602
[10] P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi and K. Watanabe, Anti-de Sitter Space from Optimization of Path Integrals in Conformal Field Theories, Phys. Rev. Lett.119 (2017) 071602 [arXiv:1703.00456] [INSPIRE]. · Zbl 1383.81189
[11] P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi and K. Watanabe, Liouville Action as Path-Integral Complexity: From Continuous Tensor Networks to AdS/CFT, JHEP11 (2017) 097 [arXiv:1706.07056] [INSPIRE]. · Zbl 1383.81189 · doi:10.1007/JHEP11(2017)097
[12] B. Czech, Einstein Equations from Varying Complexity, Phys. Rev. Lett.120 (2018) 031601 [arXiv:1706.00965] [INSPIRE]. · doi:10.1103/PhysRevLett.120.031601
[13] R. Jefferson and R.C. Myers, Circuit complexity in quantum field theory, JHEP10 (2017) 107 [arXiv:1707.08570] [INSPIRE]. · Zbl 1383.81233 · doi:10.1007/JHEP10(2017)107
[14] S. Chapman, M.P. Heller, H. Marrochio and F. Pastawski, Toward a Definition of Complexity for Quantum Field Theory States, Phys. Rev. Lett.120 (2018) 121602 [arXiv:1707.08582] [INSPIRE]. · doi:10.1103/PhysRevLett.120.121602
[15] A. Bhattacharyya, P. Caputa, S.R. Das, N. Kundu, M. Miyaji and T. Takayanagi, Path-Integral Complexity for Perturbed CFTs, JHEP07 (2018) 086 [arXiv:1804.01999] [INSPIRE]. · Zbl 1395.81204 · doi:10.1007/JHEP07(2018)086
[16] T. Takayanagi, Holographic Spacetimes as Quantum Circuits of Path-Integrations, JHEP12 (2018) 048 [arXiv:1808.09072] [INSPIRE]. · Zbl 1405.83015 · doi:10.1007/JHEP12(2018)048
[17] J.M. Magán, Black holes, complexity and quantum chaos, JHEP09 (2018) 043 [arXiv:1805.05839] [INSPIRE]. · Zbl 1398.83052 · doi:10.1007/JHEP09(2018)043
[18] P. Caputa and J.M. Magan, Quantum Computation as Gravity, arXiv:1807.04422 [INSPIRE].
[19] S. Chapman et al., Complexity and entanglement for thermofield double states, arXiv:1810.05151 [INSPIRE].
[20] T. Ali, A. Bhattacharyya, S. Shajidul Haque, E.H. Kim and N. Moynihan, Time Evolution of Complexity: A Critique of Three Methods, arXiv:1810.02734 [INSPIRE]. · Zbl 1415.81054
[21] A. Belin, A. Lewkowycz and G. Sárosi, The boundary dual of the bulk symplectic form, Phys. Lett.B 789 (2019) 71 [arXiv:1806.10144] [INSPIRE]. · Zbl 1406.81044
[22] R.L. Arnowitt, S. Deser and C.W. Misner, Dynamical Structure and Definition of Energy in General Relativity, Phys. Rev.116 (1959) 1322 [INSPIRE]. · Zbl 0092.20704 · doi:10.1103/PhysRev.116.1322
[23] J.W. York Jr., Role of conformal three geometry in the dynamics of gravitation, Phys. Rev. Lett.28 (1972) 1082 [INSPIRE]. · doi:10.1103/PhysRevLett.28.1082
[24] D. Bak, Information metric and Euclidean Janus correspondence, Phys. Lett.B 756 (2016) 200 [arXiv:1512.04735] [INSPIRE]. · Zbl 1400.81167
[25] A. Trivella, Holographic Computations of the Quantum Information Metric, Class. Quant. Grav.34 (2017) 105003 [arXiv:1607.06519] [INSPIRE]. · Zbl 1369.83031 · doi:10.1088/1361-6382/aa69a6
[26] S. Banerjee, J. Erdmenger and D. Sarkar, Connecting Fisher information to bulk entanglement in holography, JHEP08 (2018) 001 [arXiv:1701.02319] [INSPIRE]. · Zbl 1396.81160 · doi:10.1007/JHEP08(2018)001
[27] M. Flory and N. Miekley, Complexity change under conformal transformations in AdS3/CF T2, arXiv:1806.08376 [INSPIRE]. · Zbl 1416.81153
[28] J.H. Rawnsley, Coherent states and kahler manifolds, Quart. J. Math.28 (1977) 403. · Zbl 0387.58002 · doi:10.1093/qmath/28.4.403
[29] A. Ashtekar and T.A. Schilling, Geometrical formulation of quantum mechanics, gr-qc/9706069 [INSPIRE]. · Zbl 0976.53088
[30] L.G. Yaffe, Large N Limits as Classical Mechanics, Rev. Mod. Phys.54 (1982) 407 [INSPIRE]. · doi:10.1103/RevModPhys.54.407
[31] C. Crnkovic, Symplectic Geometry of the Covariant Phase Space, Superstrings and Superspace, Class. Quant. Grav.5 (1988) 1557 [INSPIRE]. · Zbl 0665.53052 · doi:10.1088/0264-9381/5/12/008
[32] J. Lee and R.M. Wald, Local symmetries and constraints, J. Math. Phys.31 (1990) 725 [INSPIRE]. · Zbl 0704.70013 · doi:10.1063/1.528801
[33] G.T. Horowitz and R.C. Myers, The AdS/CFT correspondence and a new positive energy conjecture for general relativity, Phys. Rev.D 59 (1998) 026005 [hep-th/9808079] [INSPIRE].
[34] A. Belin, J. De Boer and J. Kruthoff, Comments on a state-operator correspondence for the torus, SciPost Phys.5 (2018) 060 [arXiv:1802.00006] [INSPIRE]. · doi:10.21468/SciPostPhys.5.6.060
[35] K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality: Prescription, Renormalization and Examples, JHEP05 (2009) 085 [arXiv:0812.2909] [INSPIRE]. · doi:10.1088/1126-6708/2009/05/085
[36] D. Marolf, O. Parrikar, C. Rabideau, A. Izadi Rad and M. Van Raamsdonk, From Euclidean Sources to Lorentzian Spacetimes in Holographic Conformal Field Theories, JHEP06 (2018) 077 [arXiv:1709.10101] [INSPIRE]. · Zbl 1395.81235 · doi:10.1007/JHEP06(2018)077
[37] V. Shyam, Connecting holographic Wess-Zumino consistency condition to the holographic anomaly, JHEP03 (2018) 171 [arXiv:1712.07955] [INSPIRE]. · Zbl 1388.81699 · doi:10.1007/JHEP03(2018)171
[38] T. Faulkner, F.M. Haehl, E. Hijano, O. Parrikar, C. Rabideau and M. Van Raamsdonk, Nonlinear Gravity from Entanglement in Conformal Field Theories, JHEP08 (2017) 057 [arXiv:1705.03026] [INSPIRE]. · Zbl 1381.83099 · doi:10.1007/JHEP08(2017)057
[39] F.M. Haehl, E. Hijano, O. Parrikar and C. Rabideau, Higher Curvature Gravity from Entanglement in Conformal Field Theories, Phys. Rev. Lett.120 (2018) 201602 [arXiv:1712.06620] [INSPIRE]. · doi:10.1103/PhysRevLett.120.201602
[40] T. Faulkner and A. Lewkowycz, Bulk locality from modular flow, JHEP07 (2017) 151 [arXiv:1704.05464] [INSPIRE]. · Zbl 1380.81313 · doi:10.1007/JHEP07(2017)151
[41] M. Botta-Cantcheff, P. Martínez and G.A. Silva, On excited states in real-time AdS/CFT, JHEP02 (2016) 171 [arXiv:1512.07850] [INSPIRE]. · Zbl 1388.83188
[42] N. Lashkari and M. Van Raamsdonk, Canonical Energy is Quantum Fisher Information, JHEP04 (2016) 153 [arXiv:1508.00897] [INSPIRE]. · Zbl 1388.83288
[43] H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP05 (2011) 036 [arXiv:1102.0440] [INSPIRE]. · Zbl 1296.81073 · doi:10.1007/JHEP05(2011)036
[44] N. Lashkari, J. Lin, H. Ooguri, B. Stoica and M. Van Raamsdonk, Gravitational positive energy theorems from information inequalities, PTEP2016 (2016) 12C109 [arXiv:1605.01075] [INSPIRE]. · Zbl 1361.83023
[45] E. Witten, Canonical quantization in anti de sitter space, in PCTS (2017) [http://pcts.princeton.edu/pcts/20YearsAdSCFT/slides/4Witten.pdf ].
[46] J. Couch, S. Eccles, T. Jacobson and P. Nguyen, Holographic Complexity and Volume, JHEP11 (2018) 044 [arXiv:1807.02186] [INSPIRE]. · Zbl 1404.83044 · doi:10.1007/JHEP11(2018)044
[47] E. Witten, A Note On Boundary Conditions In Euclidean Gravity, arXiv:1805.11559 [INSPIRE]. · Zbl 07466862
[48] J. Struckmeier and C. Riedel, Canonical transformations and exact invariants for time-dependent hamiltonian systems, Annalen Phys.11 (2002) 15. · Zbl 1024.70009 · doi:10.1002/1521-3889(200201)11:1<15::AID-ANDP15>3.0.CO;2-0
[49] J. Struckmeier, Hamiltonian dynamics on the symplectic extended phase space for autonomous and non-autonomous systems, J. Phys.A 38 (2005) 1257. · Zbl 1083.70021
[50] J.M. Maldacena and L. Maoz, Wormholes in AdS, JHEP02 (2004) 053 [hep-th/0401024] [INSPIRE]. · doi:10.1088/1126-6708/2004/02/053
[51] A. Maloney, Geometric Microstates for the Three Dimensional Black Hole?, arXiv:1508.04079 [INSPIRE].
[52] Z. Fu, A. Maloney, D. Marolf, H. Maxfield and Z. Wang, Holographic complexity is nonlocal, JHEP02 (2018) 072 [arXiv:1801.01137] [INSPIRE]. · Zbl 1387.81314
[53] D. Carmi, R.C. Myers and P. Rath, Comments on Holographic Complexity, JHEP03 (2017) 118 [arXiv:1612.00433] [INSPIRE]. · Zbl 1377.81160 · doi:10.1007/JHEP03(2017)118
[54] D. Bak, M. Gutperle and S. Hirano, Three dimensional Janus and time-dependent black holes, JHEP02 (2007) 068 [hep-th/0701108] [INSPIRE]. · doi:10.1088/1126-6708/2007/02/068
[55] V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev.D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].
[56] T. Faulkner, M. Guica, T. Hartman, R.C. Myers and M. Van Raamsdonk, Gravitation from Entanglement in Holographic CFTs, JHEP03 (2014) 051 [arXiv:1312.7856] [INSPIRE]. · Zbl 1333.83141 · doi:10.1007/JHEP03(2014)051
[57] D. Carmi, S. Chapman, H. Marrochio, R.C. Myers and S. Sugishita, On the Time Dependence of Holographic Complexity, JHEP11 (2017) 188 [arXiv:1709.10184] [INSPIRE]. · Zbl 1383.81191 · doi:10.1007/JHEP11(2017)188
[58] R.-Q. Yang, C. Niu, C.-Y. Zhang and K.-Y. Kim, Comparison of holographic and field theoretic complexities for time dependent thermofield double states, JHEP02 (2018) 082 [arXiv:1710.00600] [INSPIRE]. · Zbl 1387.81279 · doi:10.1007/JHEP02(2018)082
[59] T. Hartman and J. Maldacena, Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP05 (2013) 014 [arXiv:1303.1080] [INSPIRE]. · Zbl 1342.83170 · doi:10.1007/JHEP05(2013)014
[60] S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys.217 (2001) 595 [hep-th/0002230] [INSPIRE]. · Zbl 0984.83043 · doi:10.1007/s002200100381
[61] G. Policastro, D.T. Son and A.O. Starinets, The Shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett.87 (2001) 081601 [hep-th/0104066] [INSPIRE].
[62] A.R. Brown and L. Susskind, Second law of quantum complexity, Phys. Rev.D 97 (2018) 086015 [arXiv:1701.01107] [INSPIRE].
[63] M.A. Nielsen, A geometric approach to quantum circuit lower bounds, quant-ph/0502070. · Zbl 1152.81788
[64] M. Bañados, Three-dimensional quantum geometry and black holes, AIP Conf. Proc.484 (1999) 147 [hep-th/9901148] [INSPIRE]. · Zbl 1162.83342 · doi:10.1063/1.59661
[65] L. Susskind, Three Lectures on Complexity and Black Holes, arXiv:1810.11563 [INSPIRE]. · Zbl 1429.81019
[66] A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP08 (2013) 090 [arXiv:1304.4926] [INSPIRE]. · Zbl 1342.83185 · doi:10.1007/JHEP08(2013)090
[67] J. Camps, Gravity duals of boundary cones, JHEP09 (2016) 139 [arXiv:1605.08588] [INSPIRE]. · Zbl 1390.83182 · doi:10.1007/JHEP09(2016)139
[68] T. Takayanagi, Holographic Dual of BCFT, Phys. Rev. Lett.107 (2011) 101602 [arXiv:1105.5165] [INSPIRE]. · doi:10.1103/PhysRevLett.107.101602
[69] T. Jacobson, G. Kang and R.C. Myers, On black hole entropy, Phys. Rev.D 49 (1994) 6587 [gr-qc/9312023] [INSPIRE]. · Zbl 0862.53068
[70] T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic entanglement entropy, JHEP11 (2013) 074 [arXiv:1307.2892] [INSPIRE]. · Zbl 1392.81021 · doi:10.1007/JHEP11(2013)074
[71] P. Bueno, V.S. Min, A.J. Speranza and M.R. Visser, Entanglement equilibrium for higher order gravity, Phys. Rev.D 95 (2017) 046003 [arXiv:1612.04374] [INSPIRE].
[72] A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Holographic representation of local bulk operators, Phys. Rev.D 74 (2006) 066009 [hep-th/0606141] [INSPIRE]. · Zbl 1165.81352
[73] T. Crisford, G.T. Horowitz and J.E. Santos, Testing the Weak Gravity - Cosmic Censorship Connection, Phys. Rev.D 97 (2018) 066005 [arXiv:1709.07880] [INSPIRE].
[74] J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE]. · Zbl 1361.81112
[75] K. Jensen, Chaos in AdS2Holography, Phys. Rev. Lett.117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].
[76] J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS2backreaction and holography, JHEP07 (2016) 139 [arXiv:1606.03438] [INSPIRE]. · Zbl 1390.83104
[77] H. Witek, Numerical Relativity in higher-dimensional space-times, Int. J. Mod. Phys.A 28 (2013) 1340017 [arXiv:1308.1686] [INSPIRE]. · Zbl 1277.83061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.