×

An analytical toolkit for the S-matrix bootstrap. (English) Zbl 1461.81138

Summary: We revisit analytical methods for constraining the nonperturbative \(S\)-matrix of unitary, relativistic, gapped theories in \(d \geq 3\) spacetime dimensions. We assume extended analyticity of the two-to-two scattering amplitude and use it together with elastic unitarity to develop two natural expansions of the amplitude. One is the threshold (non-relativistic) expansion and the other is the large spin expansion. The two are related by the Froissart-Gribov inversion formula. When combined with crossing and a local bound on the discontinuity of the amplitude, this allows us to constrain scattering at finite energy and spin in terms of the low-energy parameters measured in the experiment. Finally, we discuss the modern numerical approach to the \(S\)-matrix bootstrap and how it can be improved based on the results of our analysis.

MSC:

81U20 \(S\)-matrix theory, etc. in quantum theory
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
81T16 Nonperturbative methods of renormalization applied to problems in quantum field theory

References:

[1] Eden, RJ; Landshoff, PV; Olive, DI; Polkinghorne, JC, The analytic S-matrix (2002), Cambridge U.K.: Cambridge University Press, Cambridge U.K. · Zbl 0139.46204
[2] Eden, RJ, Theorems on high energy col lisions of elementary particles, Rev. Mod. Phys., 43, 15 (1971) · doi:10.1103/RevModPhys.43.15
[3] V.N. Gribov, The theory of complex angular momenta: Gribov lectures on theoretical physics, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2007) [INSPIRE].
[4] A. Martin and F. Cheung, Analyticity properties and bounds of the scattering amplitudes, in the proceedings of the 10^thBrandeis University Summer Institute in Theoretical Physics, Elementary particle physics and scattering theory, June 19-July 28, Waltham, U.S.A. (1970).
[5] Rattazzi, R.; Rychkov, VS; Tonni, E.; Vichi, A., Bounding scalar operator dimensions in 4D CFT, JHEP, 12, 031 (2008) · Zbl 1329.81324 · doi:10.1088/1126-6708/2008/12/031
[6] D. Poland, S. Rychkov and A. Vichi, The conformal bootstrap: theory, numerical techniques, and applications, Rev. Mod. Phys.91 (2019) 015002 [arXiv:1805.04405] [INSPIRE].
[7] S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3D Ising model with the conformal bootstrap, Phys. Rev. D86 (2012) 025022 [arXiv:1203.6064] [INSPIRE]. · Zbl 1310.82013
[8] Kos, F.; Poland, D.; Simmons-Duffin, D.; Vichi, A., Bootstrapping the O(N) archipelago, JHEP, 11, 106 (2015) · Zbl 1388.81054 · doi:10.1007/JHEP11(2015)106
[9] Agmon, NB; Chester, SM; Pufu, SS, The M-theory archipelago, JHEP, 02, 010 (2020) · Zbl 1435.81169 · doi:10.1007/JHEP02(2020)010
[10] M.F. Paulos, J. Penedones, J. Toledo, B.C. van Rees and P. Vieira, The S-matrix bootstrap II: two dimensional amplitudes, JHEP11 (2017) 143 [arXiv:1607.06110] [INSPIRE]. · Zbl 1383.81331
[11] He, Y.; Irrgang, A.; Kruczenski, M., A note on the S-matrix bootstrap for the 2d O(N) bosonic model, JHEP, 11, 093 (2018) · Zbl 1404.81275 · doi:10.1007/JHEP11(2018)093
[12] Córdova, L.; Vieira, P., Adding flavour to the S-matrix bootstrap, JHEP, 12, 063 (2018) · Zbl 1405.81160 · doi:10.1007/JHEP12(2018)063
[13] Córdova, L.; He, Y.; Kruczenski, M.; Vieira, P., The O(N) S-matrix monolith, JHEP, 04, 142 (2020) · Zbl 1436.81059 · doi:10.1007/JHEP04(2020)142
[14] P. Dorey, Exact S matrices, hep-th/9810026 [INSPIRE]. · Zbl 0917.35133
[15] Aks, S., Proof that scattering implies production in quantum field theory, J. Math. Phys., 6, 516 (1965) · doi:10.1063/1.1704305
[16] M.F. Paulos, J. Penedones, J. Toledo, B.C. van Rees and P. Vieira, The S-matrix bootstrap. Part III: higher dimensional amplitudes, JHEP12 (2019) 040 [arXiv:1708.06765] [INSPIRE]. · Zbl 1431.81162
[17] Guerrieri, AL; Penedones, J.; Vieira, P., Bootstrapping QCD using pion scattering amplitudes, Phys. Rev. Lett., 122, 241604 (2019) · doi:10.1103/PhysRevLett.122.241604
[18] M. Correia, M. Lemos, A. Sever and A. Zhiboedov, work in progress.
[19] Haag, R., Local quantum physics: fields, particles, algebras (1992), Berlin Germany: Springer, Berlin Germany · Zbl 0777.46037 · doi:10.1007/978-3-642-97306-2
[20] A. Martin, Inability of field theory to exploit the full unitarity condition, PRINT-66-1845 (1966).
[21] Itzykson, C.; Zuber, JB, Quantum Field Theory (1980), New York, U.S.A.: McGraw Hille, New York, U.S.A. · Zbl 0453.05035
[22] Sommer, G., Present state of rigorous analytic properties of scattering amplitudes, Fortsch. Phys., 18, 577 (1970) · doi:10.1002/prop.19700181102
[23] N.N. Bogoliubov, B. Medvedev and M. Polivanov, Voprossy Teorii Dispersionnykh Sootnoshenii (in Russian), Fortschr. Phys.6 (1958) 169. · Zbl 0083.43503
[24] Bros, J.; Epstein, H.; Glaser, V., A proof of the crossing property for two-particle amplitudes in general quantum field theory, Commun. Math. Phys., 1, 240 (1965) · doi:10.1007/BF01646307
[25] Lehmann, H., Analytic properties of scattering amplitudes as functions of momentum transfer, Nuovo Cim., 10, 579 (1958) · Zbl 0081.43406 · doi:10.1007/BF02859794
[26] Bros, J.; Epstein, H.; Glaser, VJ, Some rigorous analyticity properties of the four-point function in momentum space, Nuovo Cim., 31, 1265 (1964) · Zbl 0129.21701 · doi:10.1007/BF02733596
[27] Lehmann, H., Analytic properties of scattering amplitudes in two variables in general quantum field theory, Commun. Math. Phys., 2, 375 (1966) · Zbl 0144.23605 · doi:10.1007/BF01773361
[28] Mandelstam, S., Some rigorous analytic properties of transition amplitudes, Nuovo Cim., 15, 658 (1964) · Zbl 0093.43902 · doi:10.1007/BF02724997
[29] A. Martin, Extension of the axiomatic analyticity domain of scattering amplitudes by unitarity. 1., Nuovo Cim. A42 (1965) 930 [INSPIRE]. · Zbl 0139.23204
[30] Eden, RJ, Proof of the Mandelstam representation for every order in perturbation theory, Phys. Rev., 121, 1567 (1961) · doi:10.1103/PhysRev.121.1567
[31] Landshoff, PV; Polkinghorne, JC; Taylor, JC, A proof of the Mandelstam representation in perturbation theory, Nuovo Cim., 19, 939 (1961) · Zbl 0126.45106 · doi:10.1007/BF02731236
[32] Eden, RJ; Landshoff, PV; Polkinghorne, JC; Taylor, JC, Mandelstam representation with anomalous thresholds, Phys. Rev., 122, 307 (1961) · doi:10.1103/PhysRev.122.307
[33] Bros, J., Derivation of asymptotic crossing domains for multiparticle processes in axiomatic quantum field theory: a general approach and a complete proof for 2 → 3 particle processes, Phys. Rept., 134, 325 (1986) · doi:10.1016/0370-1573(86)90056-6
[34] Grassi Strini, AM; Strini, G.; Tagliaferri, G., Comparison between electromagnetic effects induced by vacuum polarization and the gravitational interaction, Lett. Nuovo Cim., 26, 73 (1979) · doi:10.1007/BF02746580
[35] Martin, A., Constraints imposed on Mandelstam representation by unitarity, Phys. Rev. Lett., 9, 410 (1962) · Zbl 0108.22501 · doi:10.1103/PhysRevLett.9.410
[36] A. Martin and J.-M. Richard, New result on phase shift analysis, Phys. Rev. D101 (2020) 094014 [arXiv:2004.11156] [INSPIRE].
[37] Weinberg, S., The quantum theory of fields. Volume 1: foundations (1995), Cambridge U.K.: Cambridge University Press, Cambridge U.K. · Zbl 0959.81002 · doi:10.1017/CBO9781139644167
[38] Whittaker, ET; Watson, GN, A course of modern analysis (1996), Cambridge U.K.: Cambridge University Press, Cambridge U.K. · JFM 45.0433.02 · doi:10.1017/CBO9780511608759
[39] J. Kupsch, Towards the saturation of the Froissart bound, arXiv:0801.4871 [INSPIRE].
[40] Chandler, C.; Stapp, HP, Macroscopic causality conditions and properties of scattering amplitudes, J. Math. Phys., 10, 826 (1969) · Zbl 0181.56803 · doi:10.1063/1.1664913
[41] D. Williams, Macroscopic causality and permanence of smoothness for two-particle scattering, Lectures in Theoretical Physics Volume XB, Gordon and Breach, New York U.S.A. (1968).
[42] S. Mandelstam, Determination of the pion-nucleon scattering amplitude from dispersion relations and unitarity. General theory, Phys. Rev.112 (1958) 1344 [INSPIRE].
[43] Cahill, KE; Stapp, HP, A basic discontinuity equation, Phys. Rev. D, 6, 1007 (1972) · doi:10.1103/PhysRevD.6.1007
[44] Steinmann, O., Uber den Zusammenhang zwischen Wightmanfunktionen und retardierten Kommutatoren — I, Helv. Phys. Acta, 33, 257 (1960) · Zbl 0131.44201
[45] Steinmann, O., Uber den Zusammenhang zwischen Wightmanfunktionen und retardierten Kommutatoren — II, Helv. Phys. Acta, 33, 347 (1960) · Zbl 0131.44201
[46] Cahill, KE; Stapp, HP, Optical theorems and Steinmann relations, Annals Phys., 90, 438 (1975) · doi:10.1016/0003-4916(75)90006-8
[47] S. Caron-Huot, L.J. Dixon, A. McLeod and M. von Hippel, Bootstrapping a five-loop amplitude using Steinmann relations, Phys. Rev. Lett.117 (2016) 241601 [arXiv:1609.00669] [INSPIRE].
[48] V.N. Gribov and I.T. Dyatlov, Analytic continuation of the three-particle unitarity condition. Simplest diagrams, Sov. Phys. JETP15 (1962) 140 [Zh. Eksp. Teor. Fiz.42 (1962) 196] [INSPIRE]. · Zbl 0107.22905
[49] Lardner, R., Unitarity and the Mandelstam representation, Nuovo Cim., 19, 77 (1961) · Zbl 0122.45904 · doi:10.1007/BF02812716
[50] Lardner, R., Unitarity and the Mandelstam representation — II, Nuovo Cim., 20, 733 (1961) · Zbl 0122.45904 · doi:10.1007/BF02731563
[51] Kim, Y., Anomalous thresholds and three-particle unitarity integral, Phys. Rev., 132, 927 (1963) · doi:10.1103/PhysRev.132.927
[52] Mahoux, G.; Martin, A., Some rigorous inequalities satisfied by double-spectral functions, Nuovo Cim., 233, 883 (1964) · doi:10.1007/BF02749901
[53] A. Martin, On positive spectral functions in the Mandelstam representations, Nuovo Cim. A61S10 (1969) 56 [INSPIRE].
[54] Froissart, M., Asymptotic behavior and subtractions in the Mandelstam representation, Phys. Rev., 123, 1053 (1961) · doi:10.1103/PhysRev.123.1053
[55] A.W. Martin, *Impossibility* of positive double spectral functions, Phys. Lett. B28 (1969) 679 [INSPIRE].
[56] F. Cheung, On the necessity of production amplitudes in S-matrix theory. II, Ann. Phys.46 (1968) 220. · Zbl 0155.32303
[57] Cheung, FFK; Toll, JS, Necessity of production amplitudes in quantum field theory, Phys. Rev., 160, 1072 (1967) · doi:10.1103/PhysRev.160.1072
[58] Cheung, FFK, Necessity of N-particle production amplitudes, Phys. Lett. B, 27, 302 (1968) · doi:10.1016/0370-2693(68)90105-6
[59] Camanho, XO; Edelstein, JD; Maldacena, J.; Zhiboedov, A., Causality constraints on corrections to the graviton three-point coupling, JHEP, 02, 020 (2016) · Zbl 1388.83093 · doi:10.1007/JHEP02(2016)020
[60] M. Correia, A. Sever, A. Zhiboedov, work in progress.
[61] Bethe, HA, Theory of the effective range in nuclear scattering, Phys. Rev., 76, 38 (1949) · Zbl 0033.32603 · doi:10.1103/PhysRev.76.38
[62] Reid, RV Jr, Local phenomenological nucleon-nucleon potentials, Annals Phys., 50, 411 (1968) · doi:10.1016/0003-4916(68)90126-7
[63] G. Colangelo, J. Gasser and H. Leutwyler, ππ scattering, Nucl. Phys. B603 (2001) 125 [hep-ph/0103088] [INSPIRE]. · Zbl 0972.81673
[64] M.M. Nagels et al., Compilation of coupling constants and low-energy parameters. 1978 Edition, Nucl. Phys. B147 (1979) 189 [INSPIRE].
[65] J. Bros and D. Iagolnitzer, Universality of low-energy scattering in three-dimensional field theory, Phys. Rev. D59 (1999) 081701 [hep-th/9812146] [INSPIRE].
[66] Dragt, A., Amount of four-particle production required in S-matrix theory, Phys. Rev., 156, 1588 (1967) · doi:10.1103/PhysRev.156.1588
[67] Streit, L., Die Gewichtsfunkton der Mandelstam-Darstellung am Rande ihres Trägers, Nuovo Cim., 23, 934 (1962) · Zbl 0107.22906 · doi:10.1007/BF02733140
[68] A.W. Martin, Unitarity and the mandelstam representation. II. Large-angular-momentum partial-wave amplitudes, Phys. Rev.173 (1968) 1439 [INSPIRE].
[69] Fitzpatrick, AL; Kaplan, J.; Poland, D.; Simmons-Duffin, D., The analytic bootstrap and AdS superhorizon locality, JHEP, 12, 004 (2013) · Zbl 1342.83239 · doi:10.1007/JHEP12(2013)004
[70] Komargodski, Z.; Zhiboedov, A., Convexity and liberation at large spin, JHEP, 11, 140 (2013) · doi:10.1007/JHEP11(2013)140
[71] Caron-Huot, S., Analyticity in spin in conformal theories, JHEP, 09, 078 (2017) · Zbl 1382.81173 · doi:10.1007/JHEP09(2017)078
[72] G. Nemes, and A.B. Olde Daalhuis, Large-parameter asymptotic expansions for the Legendre and al lied functions, arXiv:1905.07204.
[73] Haan, O.; Mutter, KH, A scaling law for s-channel partial wave amplitudes from t-channel unitarity, Phys. Lett. B, 52, 472 (1974) · doi:10.1016/0370-2693(74)90127-0
[74] Yndurain, FJ, S channel implications of T channel unitarity, Nucl. Phys. B, 92, 51 (1975) · doi:10.1016/0550-3213(75)90236-9
[75] Kologlu, M.; Kravchuk, P.; Simmons-Duffin, D.; Zhiboedov, A., Shocks, superconvergence, and a stringy equivalence principle, JHEP, 11, 096 (2020) · Zbl 1456.83028 · doi:10.1007/JHEP11(2020)096
[76] Martin, A.; Roy, SM, Lower bound on inelasticity in pion-pion scattering, Phys. Rev. D, 96, 114014 (2017) · doi:10.1103/PhysRevD.96.114014
[77] V.S. Vladimirov, Methods of the theory of functions of many complex variables, MIT Press, Cambridge, U.S.A. (1966).
[78] P. Kravchuk, J. Qiao and S. Rychkov, Distributions in CFT. Part I. Cross-ratio space, JHEP05 (2020) 137 [arXiv:2001.08778] [INSPIRE]. · Zbl 1437.81078
[79] Epstein, H.; Glaser, V.; Martin, A., Polynomial behaviour of scattering amplitudes at fixed momentum transfer in theories with local observables, Commun. Math. Phys., 13, 257 (1969) · Zbl 0179.30003 · doi:10.1007/BF01645415
[80] Simmons-Duffin, D.; Stanford, D.; Witten, E., A spacetime derivation of the Lorentzian OPE inversion formula, JHEP, 07, 085 (2018) · Zbl 1395.81246 · doi:10.1007/JHEP07(2018)085
[81] Carmi, D.; Caron-Huot, S., A conformal dispersion relation: correlations from absorption, JHEP, 09, 009 (2020) · Zbl 1454.81182 · doi:10.1007/JHEP09(2020)009
[82] Simmons-Duffin, D., The lightcone bootstrap and the spectrum of the 3d Ising CFT, JHEP, 03, 086 (2017) · Zbl 1377.81184 · doi:10.1007/JHEP03(2017)086
[83] Meltzer, D.; Perlmutter, E.; Sivaramakrishnan, A., Unitarity methods in AdS/CFT, JHEP, 03, 061 (2020) · Zbl 1435.83157 · doi:10.1007/JHEP03(2020)061
[84] M.F. Paulos, J. Penedones, J. Toledo, B.C. van Rees and P. Vieira, The S-matrix bootstrap. Part I: QFT in AdS, JHEP11 (2017) 133 [arXiv:1607.06109] [INSPIRE]. · Zbl 1383.81251
[85] Penedones, J.; Silva, JA; Zhiboedov, A., Nonperturbative Mel lin amplitudes: existence, properties, applications, JHEP, 08, 031 (2020) · Zbl 1454.83145 · doi:10.1007/JHEP08(2020)031
[86] J. Qiao, Classification of convergent OPE channels for Lorentzian CFT four-point functions, arXiv:2005.09105 [INSPIRE].
[87] Zamolodchikov, AB, Conformal symmetry in two-dimensions: an explicit recurrence formula for the conformal partial wave amplitude, Commun. Math. Phys., 96, 419 (1984) · doi:10.1007/BF01214585
[88] Maldacena, J.; Simmons-Duffin, D.; Zhiboedov, A., Looking for a bulk point, JHEP, 01, 013 (2017) · Zbl 1373.81335 · doi:10.1007/JHEP01(2017)013
[89] S. Mandelstam, Cuts in the angular momentum plane. 2, Nuovo Cim.30 (1963) 1148 [INSPIRE].
[90] Bissi, A.; Dey, P.; Hansen, T., Dispersion relation for CFT four-point functions, JHEP, 04, 092 (2020) · Zbl 1436.81111 · doi:10.1007/JHEP04(2020)092
[91] P. Benincasa and F. Cachazo, Consistency conditions on the S-matrix of massless particles, arXiv:0705.4305 [INSPIRE].
[92] N. Arkani-Hamed, T.-C. Huang and Y.-t. Huang, Scattering amplitudes for all masses and spins, arXiv:1709.04891 [INSPIRE].
[93] C. de Rham, S. Melville, A.J. Tolley and S.-Y. Zhou, Positivity bounds for massive spin-1 and spin-2 fields, JHEP03 (2019) 182 [arXiv:1804.10624] [INSPIRE]. · Zbl 1414.81156
[94] Gegenbauer, L., Das Additionstheorem der Functionen \({C}_n^v \)(x), Sitz. Math. Natur. Klasse Akad. Wiss., 102, 942 (1893) · JFM 25.0830.01
[95] Bateman, H., Higher transcendental functions (1953), New York U.S.A.: McGraw-Hill, New York U.S.A. · Zbl 0051.30303
[96] G. Arfken, The addition theorem for spherical harmonics, 3^rd edition, Mathematical Methods for Physicists section 12.8, Academic Press, U.S.A. (1985). · Zbl 0135.42304
[97] Wigner, E., Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren (1931), Germany: Springer, Germany · JFM 57.1578.03 · doi:10.1007/978-3-663-02555-9
[98] Gribov, VN, Possible asymptotic behavior of elastic scattering, JETP Lett., 41, 667 (1961)
[99] Gribov, VN, Asymptotic behaviour of the scattering amplitude at high energies, Nucl. Phys., 22, 249 (1961) · doi:10.1016/0029-5582(61)90457-6
[100] Brower, RC; Polchinski, J.; Strassler, MJ; Tan, C-I, The Pomeron and gauge/string duality, JHEP, 12, 005 (2007) · Zbl 1246.81224 · doi:10.1088/1126-6708/2007/12/005
[101] Caron-Huot, S.; Komargodski, Z.; Sever, A.; Zhiboedov, A., Strings from Massive Higher Spins: The Asymptotic Uniqueness of the Veneziano Amplitude, JHEP, 10, 026 (2017) · Zbl 1383.83162 · doi:10.1007/JHEP10(2017)026
[102] Desai, B.; Sakita, B., Threshold Regge poles and the effective-range expansion, Phys. Rev., 136, B226 (1964) · doi:10.1103/PhysRev.136.B226
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.